Санкт Петербургский государственный университет информационных технологий механики и оптики
Реферат
По истории информатики на тему
“История развития методов и технологий
проектирования приложений ”
Аспирант:
|
Зверев А.О.
|
Кафедра:
|
ВТ
|
Специальность:
|
05.13.13
|
Санкт-Петербург
2009 г
.
Оглавление
Введение. 3
1. Развитие методов проектирования. 5
1.1 Структурная методология. 5
1.2 CASE-технологии. 8
2. Модели жизненного цикла приложения. 10
2.1 Каскадная модель. 11
2.2 Спиральная модель. 13
Заключение. 16
Список литературы.. 17
Введение
Тенденции развития современных информационных технологий приводят к постоянному возрастанию сложности информационных систем (ИС), создаваемых в различных областях экономики. Современные крупные проекты ИС характеризуются, как правило, следующими особенностями:
· сложность описания: достаточно большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними; требует тщательного моделирования и анализа данных и процессов;
· наличие совокупности тесно взаимодействующих компонентов (подсистем), имеющих свои локальные задачи и цели функционирования;
· отсутствие прямых аналогов, ограничивающее возможность использования каких-либо типовых проектных решений и прикладных систем;
· необходимость интеграции существующих и вновь разрабатываемых приложений;
· функционирование в неоднородной среде на нескольких аппаратных платформах;
· разобщенность и разнородность отдельных групп разработчиков по уровню квалификации и сложившимся традициям использования тех или иных инструментальных средств;
· существенная временная протяженность проекта, обусловленная, с одной стороны, ограниченными возможностями коллектива разработчиков, и, с другой стороны, масштабами организации-заказчика и различной степенью готовности отдельных ее подразделений к внедрению ИС.
Для успешной реализации проекта объект проектирования (ИС) должен быть прежде всего адекватно описан, должны быть построены полные и непротиворечивые функциональные и информационные модели ИС. Накопленный к настоящему времени опыт проектирования ИС показывает, что это логически сложная, трудоемкая и длительная по времени работа, требующая высокой квалификации участвующих в ней специалистов.
Одним из базовых понятий методологии проектирования ИС является понятие жизненного цикла ее программного обеспечения (ЖЦ ПО). ЖЦ ПО - это непрерывный процесс, который начинается с момента принятия решения о необходимости его создания и заканчивается в момент его полного изъятия из эксплуатации.
Каждый процесс характеризуется определенными задачами и методами их решения, исходными данными, полученными на предыдущем этапе, и результатами. Результатами анализа, в частности, являются функциональные модели, информационные модели и соответствующие им диаграммы. ЖЦ ПО носит итерационный характер: результаты очередного этапа часто вызывают изменения в проектных решениях, выработанных на более ранних этапах.
1. Развитие методов проектирования
До недавнего времени проектирование ИС выполнялось в основном на интуитивном уровне с применением неформализованных методов, основанных на искусстве, практическом опыте, экспертных оценках и дорогостоящих экспериментальных проверках качества функционирования ИС.
1.1 Структурная методология
В 70-х и 80-х годах при разработке ИС достаточно широко применялась структурная методология, предоставляющая в распоряжение разработчиков строгие формализованные методы описания ИС и принимаемых технических решений. Методология структурного анализа и проектирования, интегрирующая процесс моделирования, управление конфигурацией проекта, использование дополнительных языковых средств и руководство проектом со своим графическим языком. Процесс моделирования хорошо отлажен, потому что при разработке проекта специалисты выполняют конкретные обязанности, а проектировщик обеспечивает своевременный обмен информацией. Структурная методология основана на наглядной графической технике: для описания различного рода моделей ИС используются схемы и диаграммы. Наглядность и строгость средств структурного анализа позволяла разработчикам и будущим пользователям системы с самого начала неформально участвовать в ее создании, обсуждать и закреплять понимание основных технических решений.
Структурная методология возникла в конце 60-х годов в ходе революции, вызванной структурным программированием. Когда большинство специалистов билось над созданием программного обеспечения, немногие старались разрешить более сложную задачу создания крупномасштабных систем, включающих как людей и машины, так и программное обеспечение, аналогичных системам, применяемым в телефонной связи, промышленности, управлении и контроле за вооружением. В то время специалисты, традиционно занимавшиеся созданием крупномасштабных систем, стали осознавать необходимость большей упорядоченности.
Часть PLEX-теорий относящихся к методологии и языку описания систем, были названы их автором, Дугласом Т. Россом «Методологией структурного анализа и проектирования» (SADT - Structural Analysis and Design Technique). Исходная работа над SADT началась в 1969 г. Первое ее крупное приложение было реализовано в 1973 г. при разработке большого аэрокосмического проекта, когда она была несколько пересмотрена сотрудниками SofTech, Inc. В 1974 г. SADT была еще улучшена и передана одной из крупнейших европейских телефонных компаний. Появление SADT на рынке произошло в 1975 г. после годичного оформления в виде продукта. К 1981 г. SADT уже использовали более чем в 50 компаниях при работе более чем над 200 проектами, включавшими более 2000 людей и охватывавшими дюжину проблемных областей, в том числе телефонные сети, аэрокосмическое производство, управление и контроль, учет материально-технических ресурсов и обработку данных. Ее широкое распространение в настоящее время в европейской, дальневосточной и американской аэрокосмической промышленности (под названием IDEF0) позволяет эти цифры существенно увеличить. Таким образом, SADT выделяется среди современных методологий описания систем благодаря своему широкому применению.
В начале 70-х годов методология SADT была реализована в виде четкой формальной процедуры. В ходе этой реализации, SADT-аналитики использовали бланки диаграмм и титульные листы. В конце 70-х появились компьютеры достаточной мощности и диапазона с приемлемой скоростью создания графических изображений. Это дало возможность автоматизировать те структурные методы, которые, подобно SADT, существенно опирались на графику. Хотя такие технологии в то время только начинали развиваться, ВВС США финансировали разработку первой системы автоматизации SADT (и, кстати говоря, первого автоматизированного средства для структурного анализа, делающего упор на графику), названного AUTOIDEF0.
В начале 80-х годов появился умещающийся на письменном столе персональный компьютер с графическими возможностями. Это привело к созданию автоматизированных рабочих мест для нескольких графических методов структурного анализа. В это же время первые попытки реализации SADT на мини- и микрокомпьютерах были предприняты в США, Европе и Скандинавии.
Современный уровень информационных технологий предоставляет богатый выбор методов для создания автоматизированной поддержки SADT. Наиболее доступным на сегодняшний день SADT-средством является Design/IDEF (Meta Software Corp.) — изначально построенный в рамках программы интегрированной компьютеризации производства и широко используемый ныне в различных областях деятельности. Автоматизированная поддержка SADT происходит в развитии от просто графического средства до программного обеспечения, функционирующего на базе знаний более общих понятий моделирования. Такие развитые средства обладают способностью понимать семантику взаимосвязанной сети диаграмм SADT и множества моделей, а также объединять это множество сведений и правил с другими технологиями.
В тоже время разработка по SADT методологии обычно порождала следующие проблемы:
· неадекватная спецификация требований;
· неспособность обнаруживать ошибки в проектных решениях;
· низкое качество документации, снижающее эксплуатационные качества;
· затяжной цикл и неудовлетворительные результаты тестирования.
1.2
CASE-технологии
Перечисленные факторы способствовали появлению программно-технологических средств специального класса - CASE-средств, реализующих CASE-технологию создания и сопровождения ИС. Термин CASE (Computer Aided Software Engineering) используется в настоящее время в весьма широком смысле. Первоначальное значение термина CASE, ограниченное вопросами автоматизации разработки только лишь программного обеспечения (ПО), в настоящее время приобрело новый смысл, охватывающий процесс разработки сложных ИС в целом. Теперь под термином CASE-средства понимаются программные средства, поддерживающие процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного ПО (приложений) и баз данных, генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным ПО и техническими средствами образуют полную среду разработки ИС.
Появлению CASE-технологии и CASE-средств предшествовали исследования в области методологии программирования. Программирование обрело черты системного подхода с разработкой и внедрением языков высокого уровня, методов структурного и модульного программирования, языков проектирования и средств их поддержки, формальных и неформальных языков описаний системных требований и спецификаций.
CASE-технология представляет собой методологию проектирования ИС, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех этапах разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей. Большинство существующих CASE-средств основано на методологиях структурного (в основном) или объектно-ориентированного анализа и проектирования, использующих спецификации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств.
Ввиду разнообразной природы CASE-средств было бы ошибочно делать какие-либо безоговорочные утверждения относительно реального удовлетворения тех или иных ожиданий от их внедрения. Можно перечислить следующие факторы, усложняющие определение возможного эффекта от использования CASE-средств:
· широкое разнообразие качества и возможностей CASE-средств;
· относительно небольшое время использования CASE-средств в различных организациях и недостаток опыта их применения;
· широкое разнообразие в практике внедрения различных организаций;
· отсутствие детальных метрик и данных для уже выполненных и текущих проектов;
· широкий диапазон предметных областей проектов;
· различная степень интеграции CASE-средств в различных проектах
Успешное внедрение CASE-средств должно обеспечить такие выгоды как:
· высокий уровень технологической поддержки процессов разработки и сопровождения ПО;
· положительное воздействие на некоторые или все из перечисленных факторов: производительность, качество продукции, соблюдение стандартов, документирование;
· приемлемый уровень отдачи от инвестиций в CASE-средства.
2. Модели жизненного цикла приложения
Основным нормативным документом, регламентирующим ЖЦ ПО, является международный стандарт ISO/IEC 12207 [5] (ISO - International Organization of Standardization - Международная организация по стандартизации, IEC - International Electrotechnical Commission - Международная комиссия по электротехнике). Он определяет структуру ЖЦ, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания ПО.
Структура ЖЦ ПО по стандарту ISO/IEC 12207 базируется на трех группах процессов:
· основные процессы ЖЦ ПО (приобретение, поставка, разработка, эксплуатация, сопровождение);
· вспомогательные процессы, обеспечивающие выполнение основных процессов (документирование, управление конфигурацией, обеспечение качества, верификация, аттестация, оценка, аудит, решение проблем);
· организационные процессы (управление проектами, создание инфраструктуры проекта, определение, оценка и улучшение самого ЖЦ, обучение).
Стандарт ISO/IEC 12207 не предлагает конкретную модель ЖЦ и методы разработки ПО (под моделью ЖЦ понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении ЖЦ. Модель ЖЦ зависит от специфики ИС и специфики условий, в которых последняя создается и функционирует). Его регламенты являются общими для любых моделей ЖЦ, методологий и технологий разработки. Стандарт ISO/IEC 12207 описывает структуру процессов ЖЦ ПО, но не конкретизирует в деталях, как реализовать или выполнить действия и задачи, включенные в эти процессы.
К настоящему времени наибольшее распространение получили следующие две основные модели ЖЦ:
· каскадная модель (70-85 г.г.);
· спиральная модель (86-90 г.г.).
2.1 Каскадная модель
В изначально существовавших однородных ИС каждое приложение представляло собой единое целое. Для разработки такого типа приложений применялся каскадный способ. Его основной характеристикой является разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем (рис. 1). Каждый этап завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.
Рисунок 1. Каскадная схема разработки
Положительные стороны применения каскадного подхода заключаются в следующем [2]:
· на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;
· выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.
В 1970 году в своей статье Ройс описал в виде концепции то, что сейчас принято называть «модель водопада», и обсуждал недостатки этой модели. Там же он показал как эта модель может быть доработана до итеративной модели. Каскадный подход хорошо зарекомендовал себя при построении ИС, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования, с тем чтобы предоставить разработчикам свободу реализовать их как можно лучше с технической точки зрения. В эту категорию попадают сложные расчетные системы, системы реального времени и другие подобные задачи. Однако, в процессе использования этого подхода обнаружился ряд его недостатков, вызванных прежде всего тем, что реальный процесс создания ПО никогда полностью не укладывался в такую жесткую схему. В процессе создания ПО постоянно возникала потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений. В результате реальный процесс создания ПО принимал следующий вид (рис. 2).
Рисунок 2. Реальный процесс разработки в каскадной модели
Основным недостатком каскадного подхода является существенное запаздывание с получением результатов. Согласование результатов с пользователями производится только в точках, планируемых после завершения каждого этапа работ, требования к ИС "заморожены" в виде технического задания на все время ее создания. Таким образом, пользователи могут внести свои замечания только после того, как работа над системой будет полностью завершена. В случае неточного изложения требований или их изменения в течение длительного периода создания ПО, пользователи получают систему, не удовлетворяющую их потребностям. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением.
2.2 Спиральная модель
Для преодоления перечисленных проблем была предложена спиральная модель ЖЦ [10] (рис. 3), делающая упор на начальные этапы ЖЦ: анализ и проектирование. На этих этапах реализуемость технических решений проверяется путем создания прототипов. Каждый виток спирали соответствует созданию фрагмента или версии ПО, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации.
Рисунок 3. Спиральная модель
Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. При итеративном способе разработки недостающую работу можно будет выполнить на следующей итерации. Главная же задача - как можно быстрее показать пользователям системы работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований.
Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.
Хотя индустрия разработки ПО достаточно молода, многие компании-разработчики уже осознали, что успех программных проектов зависит от однозначного определения и грамотного документирования процесса. Корпорация Rational Software, ведущий производитель инструментария для создания сложных программных систем, формализовала технологический процесс разработки ПО и выпустила на рынок структурированную базу знаний под названием Rational Unified Process (RUP), в которую вошли методические рекомендации ведущих разработчиков по эффективному созданию приложений и систем. При этом RUP не есть нечто застывшее. База знаний регулярно обновляется и совершенствуется с учетом передового опыта. RUP ведет свою историю от продуктов Rational Approach и Objectory Process 3.8, объединение которых произошло после слияния в 1995 г. корпораций Rational Software и Objectory AB. Основными понятиями RUP являются артефакт (artifact) и прецедент (precedent). Артефакты — это некоторые продукты проекта, порождаемые или используемые в нем при работе над окончательным продуктом. Прецеденты — это последовательности действий, выполняемых системой для получения наблюдаемого результата.
Весь процесс разработки программной системы рассматривается в RUP как процесс создания артефактов. Причем то, что попадает в руки конечного пользователя, будь то программный модуль или программная документация, — это один из подклассов всех артефактов проекта.
В 1994 году Гради Буч и Джеймс Рамбо, работавшие в компании Rational Software, объединили свои усилия для создания нового языка объектно-ориентированного моделирования. За основу языка ими были взяты методы моделирования, разработанные Бучем (Booch) и Рамбо (Object Modeling Technique — OMT). OMT был ориентирован на анализ, а Booch — на проектирование программных систем. В октябре 1995 года была выпущена предварительная версия 0.8 унифицированного метода (англ. Unified Method). Осенью 1995 года к компании Rational присоединился Айвар Якобсон, автор метода Object-Oriented Software Engineering — OOSE. OOSE обеспечивал превосходные возможности для спецификации бизнес-процессов и анализа требований при помощи сценариев использования. OOSE был также интегрирован в унифицированный метод.
На этом этапе основная роль в организации процесса разработки UML перешла к консорциуму OMG (Object Management Group). Группа разработчиков в OMG, в которую также входили Буч, Рамбо и Якобсон, выпустила спецификации UML версий 0.9 и 0.91 в июне и октябре 1996 года.
На волне растущего интереса к UML к разработке новых версий языка в рамках консорциума UML Partners присоединились такие компании, как Digital Equipment Corporation, Hewlett-Packard, i-Logix, IntelliCorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle Corporation, Rational Software, Texas Instruments и Unisys. Результатом совместной работы стала спецификация UML 1.0, вышедшая в январе 1997 года. В ноябре того же года за ней последовала версия 1.1, содержавшая улучшения нотации, а также некоторые расширения семантики.
Заключение
Несмотря на высокие потенциальные возможности CASE-технологии (увеличение производительности труда, улучшение качества программных продуктов, поддержка унифицированного и согласованного стиля работы) далеко не все разработчики информационных систем, использующие CASE-средства, достигают ожидаемых результатов.
Существуют различные причины возможных неудач, но, видимо, основной причиной является неадекватное понимание сути программирования информационных систем и применения CASE-средств. Необходимо понимать, что процесс проектирования и разработки информационной системы на основе CASE-технологии не может быть подобен процессу приготовления пищи по поваренной книге. Всегда следует быть готовым к новым трудностям, связанным с освоением новой технологии, последовательно преодолевать эти трудности и последовательно добиваться нужных результатов.
Список литературы
1. Д. Марка, К. МагГоуэн. Методология структурного анализа и проектирования SADT. –М.: МетаТехнология, 1993 г.;
2. Г. Буч. Объектно-ориентированный анализ и проектирование с примерами приложений. – Вильямс, 2008;
3. Дж. Нильссон. Применение DDD и шаблонов проектирования: проблемно-ориентированное проектирование приложений с примерами на C# и .NET. – Вильямс, 2007;
4. М. Тернер. Основы Microsoft Solution Framework. – Питер, 2008;
5. Э. Йордон. Объектно-ориентированный анализ и проектирование систем.– Лори, 2007;
6. Э. Таненбаум. Распределенные системы. Принципы и парадигмы. – Питер, 2003;
7. IBM Developer Networks: Rational software developer resources http://www.ibm.com/developerworks/rational
|