Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Синтез и превращения азотпроизводных карбоновых кислот

Название: Синтез и превращения азотпроизводных карбоновых кислот
Раздел: Остальные рефераты
Тип: реферат Добавлен 22:28:36 26 марта 2012 Похожие работы
Просмотров: 234 Комментариев: 12 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Реферат

Синтез и превращения азотпроизводных карбоновых кислот

Содержание

стр.

Введение 3

1. Амидирование 4

2. Дегидратация амидов и гидратация нитрилов 8

3. Гидролиз и этерификация нитрилов 11

Список литературы 15

Введение

Процессы гидролиза, гидратации, дегидратации, этерификации и амидирования имеют очень важное значение в промышленности основного органического и нефтехимического синтеза. Гидролизом жиров, целлюлозы и углеводов давно получют мыло, глицерин, этанол и другие ценные продукты. В области органического синтеза рассматриваемые процессы используют главным образом для производства спиртов C2 -C5 , фенолов, простых эфиров, -оксидов, многих ненасыщенных соединений, карбоновых кислот и их производных (сложных эфиров, ангидридов, нитрилов, амидов) и других соединений.

Перечисленные вещества имеют очень важное применение в качестве промежуточных продуктов органического синтеза (спирты, кислоты и их производные, альдегиды, -оксиды), мономеров и исходных веществ для синтеза полимерных материалов (фенол, эфиры акриловой и метакриловой кислот, меламин, хлоролефины), пластификаторов и смазочных материалов (сложные эфиры), растворителей (спирты, простые и сложные эфиры, хлоролефины), пестицидов (эфиры карбаминовой и тиокарбаминовой кислот). Очень часто рассматриваемые реакции являются промежуточным этапом в многостадийных синтезах других продуктов целевого назначения.

Производство перечисленных веществ имеет большие масштабы. Так, в США синтезируют по 500 тыс. т этанола и изопропанола, 900 тыс. т пропиленоксида, 200 тыс. т эпихлоргидрина, свыше 4 млн. т сложных эфиров, около 300 тыс. т изоцианатов.

1. Амидирование

При действии аммиака, первичных или вторичных аминов на карбоновые кислоты получаются амиды кислот:

RCOOH + NH3 ↔ RCONH2 + H2 O

RCOOH + R’NH2 ↔ RCONHR’ + H2 O

RCOOH + R’NH2 ↔ RCONR’2 + H2 O

Реакция во многом сходна с этерификацией. Она также обратима, но, по сравнению с этерификацией, ее равновесие сильнее смещено вправо. Строение кислоты оказывает такое же влияние на термодинамику и скорость амидирования, как при этерификации (разветвление и удлинение углеродной цепи кислоты повышает константу равновесия, но снижает скорость процесса). Аммиак и особенно амины являются более сильными нуклеофильными реагентами, чем спирты, поэтому амидирование может протекать в отсутствие катализаторов, путем нагревания реагентов при 200 – 3000 С в жидкой фазе. Удаление воды при использовании избытка аммиака (или амина) способствует достижению высокой степени конверсии. В отдельных случаях рекомендовано применять катализаторы кислотного типа, например AI2 O3 .

Карбоновая кислота и амин (или аммиак) образуют соль, но последняя не активна при амидировании, и ее образование ведет к дезактивированию обоих реагентов. Поэтому соль должна вначале продиссоциировать на свободную кислоту и амин, после чего протекает амидирование:

Скорость реакции пропорциональна концентрациям свободной кислоты и амина (аммиака), которые определяются равновесием диссоциации соли. Константа этого равновесия растет с повышением температуры, чем и обусловлен выбор температуры амидирования.

Амидирование, как и этерификацию, можно провести в очень мягких условиях действием хлорангидридов кислот:

RCOCI + R’NH2 → RCONHR’ + HCI

Сложные эфиры также реагируют с аммиаком и аминами по обратимой реакции, равновесие которой сдвинуто вправо:

RCOOR’ + R”NH2 ↔ RCONHR” + R’OH

Эта реакция протекает значительно быстрее, чем амидирование самих карбоновых кислот. Она осуществляется без катализаторов при 50 – 1000 С и является удобным методом синтеза некоторых амидов.

Процессы амидирования имеют важное значение в промышленности основного органического и нефтехимического синтеза для производства ряда ценных соединений. Из эфиров муравьиной кислоты, синтезируемых из оксида углерода и спиртов в присутствии основных катализаторов, получают диметилформамид:

CO + ROH HCOOR HCON(CH3 )2 + ROH

Это – ценный растворитель, применяемый для абсорбции ацетилена из углеводородных газов, в производстве полиакрилонитрильного волокна и т. п.

Из уксусной кислоты и диметиламина получают растворитель диметилацетамид; стеариновая и другие высшие карбоновые кислоты дают с эталонаминами этаноламиды:

CH3 COOH + (CH3 )2 NH → CH3 CON(CH3 )2 + H2 O

C17 H35 COOH + H2 NCH2 CH2 OH C17 H35 CONHCH2 CH2 OH

Из уксуной кислоты и диметиламина получают растворитель диметилацетамид; стеариновая и другие высшие карбоновые кислоты дают с этаноламинами этаноламиды:

CH3 COOH + (CH3 )2 NH → CH3 CON(CH3 )2 + H2 O

C17 H35 COOH + H2 NCH2 CH2 OH C17 H35 CONHCH2 CH2 OH

Последние обладают хорошими пенообразующими свойствами и применяются как компоненты моющих и текстильно-вспомогательных средств.

К амидированию способны внутренние эфиры гидроксикарбоновых кисло (лактоны). Из -бутиролактона и аммиака или метиламина получают -пирролидон и N-метилпирролидон:

-Пирролидон применяют для получения ценного мономера – N-винилпирролидона, а N-метилпирролидон является превосходным растворителем и экстрагентом, например, для выделения ацетилена из углеводородных газов.

На реакции амидирования основан синтез важного класса пестицидов – неполных амидов циануровой кислоты. Их получают из цианухлорида и низших первичных аминов, например из этиламина получают симазин:

Пропильный гомолог симазина называется пропазином. Оба они, а также другие их аналоги, являются эффективными гербецидами.

При производстве амидов из карбоновых кислот или лактонов может быть несколько вариантов процесса.

1. Исходные реагенты и образующийся амид мало летучи (получение этаноламидов высших кислот и др.). В этом случае процесс ведут вначале при нагревании до 150 – 2000 С и завершают реакцию отгонкой воды (в вакууме, отдувкой азотом).

2. Наиболее летучим компонентом реакционной массы является один из исходных реагентов (обычно аммиак или амин, как в производстве лактамов из лактонов). Реакцию проводят при 200 – 3000 С с избытком аммиака или амина под давлением, необходимым для поддержания реакционной массы в жидком состоянии. При малой летучести кислоты и амида можно барботировать при атмосферном давлении аммиак, который одновременно выдувает образующуюся воду, способствуя высокой степени конверсии реагентов. Второй вариант обычно применяют и при производстве амидов из сложных эфиров, для чего требуется температура 50-1000 С. Так, диметилформамид можно получать при атмосферном или повышенном давлении, барботируя газообразные метилформиат и диметиламин через продукт реакции и совмещая химическую реакцию с отгонкой метанола.

В единичных случаях ведут синтез амидов и в газовой фазе. Например, диметилацетамид получаю, пропуская пары уксусной кислоты и диметиламина при 2500 С через реактор, заполненный оксидом алюминия.

2. Дегидратация амидов и гидратация нитрилов

Дегидратация амидов кислот до нитрилов является равновесным и сильноэндотермическим процессом:

Равновесие смещается вправо только при 300 – 4000 С, причем для ускорения реакции требуются катализаторы кислотного типа (фосфорная кислота на носителе, оксид алюминия, алюмосиликаты, фосфаты). Механизм дегидратации состоит в такой же последовательности обратимых превращений:

Таким путем нитрилы можно получать и непосредственно из карбоновых кислот (без промежуточного выделения амидов) в присутствии дегидратирующих катализаторов:

RCOOH +NH3 ↔ RCN + 2H2 O,

но промышленное значение этот метод может иметь только в тех случаях, когда карбоновая кислота дешевле и доступнее, чем ее нитрил.

Адиподинитрил CN(CH2 )4 CN (динитрил адипиновой кислоты) является промежуточным продуктом при получении гексаметилендиамина из адипиновой кислоты:

Адипинонитрил можно получать в жидкой и газовой фазе. При газофазном процессе в качестве катализатора применяют фосфорную кислоту на носителе. Сначала через расплавленную адипиновую кислоту, нагретую в испарителе до 2000 С, пропускают избыток аммиака. При этом происходит ступенчатое амидирование до моно- и диамида. Смесь паров этих веществ вместе с избыточным аммиаком поступает контактный аппарат адиабатического типа, заполненный катализатором. В нем при 390 – 3000 С и времени контакта 6 секунд завершается реакция амидирования и происходит дегидратация амида с образованием амидонитрила, адиподинитрила и побочного продукта - иминоцианоциклопентана:

После использования тепла горячей реакционной смеси ее охлаждают, причем адиподинитрил, амидонитрил, иминоцианоциклопентан и вода конденсируются, а несконденсированный аммиак возвращают на реакцию. Воду отделяют от органических продуктов в сепараторе. Водный слой содержит значительное количество растворенного адиподинитрила, который лучше всего экстрагировать толуолом или ксилолами. Адиподинитрил выделяют в чистом виде (выход 80%) вакуум-перегонкой.

Другие способы получения адиподинитрила – хлорирование бутадиена – 1,3 с замещением атомов хлора на цианогруппы и электрогидродимеризация акрилонитрила:

Все эти способы реализованы в промышленности. Кроме них разрабатывают методы, основанные на каталитическом присоединении HCN к бутадиену-1,3 и каталитической гидродимеризации акрилонитрила, но в этих случаях побочно образуется значительное количество изомерных динитрилов.

В противоположность дегидратации амидов, гидратация нитрилов в амиды кислот является экзотермической реакцией и при умеренных температурах практически необратимой. Наибольший интерес она представляет для синтеза акриламида из акрилонитрила:

CH2 =CHCN + H2 O → CH2 =CHCONH2

Ранее этот процесс осуществляли с 80-85% серной кислотой, что приводило к излишнему расходу реагентов и образованию отходов сульфата аммония. Позднее было обнаружено, что эффективным катализатором является металлическая медь. Синтез осуществляют в водном растворе при 70-1200 С; из реакционной массы отфильтровывают медь и отгоняют непревращенный акрилонитрил, рециркулируя их в реактор. Водный раствор акриламида упаривают до концентрации 30 – 50% или до получения кристаллического акриламида.

Акриламид легко полимеризуется в водорастворимый полиакриламид, который является ценным флокулянтом, широко применяемым для разделения водных суспензий, при флотации, очистке сточных вод и др.

3. Гидролиз и этерификация нитрилов

Гидролиз нитрилов является одним из распространенных методов синтеза карбоновых кислот. Это объясняется доступностью многих нитрилов, получаемых замещением хлора на цианогруппу, окислительным аммонолизом, цианогидрированием карбинольных соединений и т. д.

Гидролиз нитрилов протекает через промежуточное образование амидов и катализируется как кислотами, так и щелочами. Катализаторы связывают продукты реакции в соли, что обеспечивает необходимость гидролиза:

RCOONa + NH3 RCN RCOOH + NH4 HSO4

Обычно предпочитают кислотный гидролиз, позволяющий получить карбоновую кислоту в свободном виде. Он осуществляется в водной среде с не менее чем стехиометрическим количеством кислоты при 50-800 С и протекает через следующие стадии:

Реакция сильно экзотермична, поэтому ее проводят, постепенно приливая нитрил к нагретому раствору серной кислоты в охлаждаемом реакторе с мешалкой. Таким путем получают фенил-уксусную кислоту, малоновую и др. Так, если адиподинитрил получен из бутадиена-1,3 или акрилонитрила, его гидролизом можно синтезировать адипиновую кислоту:

NC-(CH2 )4 -CN + 4H2 O + 2H+ → HOOC-(CH2 )4 -COOH + 2NH+ 4

Если целевыми продуктами являются не сами кислоты, а их сложные эфиры, можно совместить гидролиз нитрила с этерификацией. В этом случае процесс ведут со смесью воды и спирта, причем серная кислота катализирует и гидролиз и этерификацию:

До недавнего времени это был самый экономичный способ синтеза эфиров акриловой кислотой из акрилонитрила:

CH2 =CHCN + H2 O + ROH + H+ → CH2 =CH-COOR +NH+ 4 ,

Но теперь он вытесняется более эффективным путем этерификации акриловой кислоты, полученной окислением пропилена.

Еще раньше акриловую кислоту и ее эфиры вырабатывали из цианогидрина ацетальдегида. Аналогичный этому метод сохраняет значение для производства метакриловой кислоты и ее эфиров. Вначале из ацетона и синильной кислоты синтезируют ацетонцианогидрин:

При обычном гидролизе последний дает -гидроксиизомасляную кислоту (CH3 )2 C(OH)-COOH, но при обработке ацетонцианогидрина 100% серной кислотой происходит образование имида и затем его дегидратация с образованием ненасыщенного амида. При добавлении воды и метанола происходит этерификация; серная кислота служит катализатором:

Побочно образуются диметиловый эфир (за счет межмолекулярной дегидратации спирта), эфир -гидроксиизомасляной кислоты, немного смол и полимеров.

Общим недостатком рассматриваемых методов является большой расход серной кислоты, которую приходится утилизировать в виде малоценного удобрения (сульфат аммония). Получается также значительное количество токсичных сточных вод.

Производство метилметакрилата пока осуществляют описанным способом из ацетонцианогидрина. Технологическая схема способа представлена на рис. 1.


Рис. 1 Технологическая схема получения метилметакрилата из ацетонцианогидрина

1. Смеситель, 2. Реактор, 3. Эфиризатор, 4. Конденсаторы-дефлегматоры, 5. Экстрактор, 6. Отпарная колонна, 7,8. Ректификационные колонны, 9. Теплообменник, 10. Кипятильники


Ацетонцианггидрин (АЦГ) и 100% серную кислоту (моногидрат) в мольном соотношении 1,0 : 1,5 непрерывно подают в смеситель 1, где образуется имид. При смешении выделяется большое количество тепла, поэтому смеситель снабжен мешалкой и змеевиком для охлаждения, способными обеспечить температуру 80-850 С. Реакционная смесь перетекает через боковой перелив в реактор 2, где за счет обогрева паром достигается температура 130 – 1350 С. При этих условиях имид превращается в сульфат метакриламида.

Полученную реакционную массу смешивают с некоторым количеством воды и частью метанола и направляют в Эфиризатор 3 уже встречавшегося ранее типа тарельчатой колонны. Она имеет кипятильник, при помощи которого азеотропную смесь метиметакрилата с водой и метанол отгоняют от раствора сульфата аммония, который выводят из куба. Из-за высокой летучести вводят часть метанола на одну из нижних тарелок эфиризатора, чтобы обеспечить его наличие на всех тарелках. Пары азеотропной смеси и метанола конденсируются в конденсаторе-дефлегматоре 4, причем часть конденсата возвращают в эфиризатор 3 в качестве флегмы, а остальное отводят на переработку.

Первый этап переработки – промывка конденсата подщелоченной водой в экстракторе 5, где из органического слоя отмываются метанол и примеси кислотного характера можно использовать для разбавления сульфата метакриламида перед эфиризатором 3, а от остального количества в отпарной колонне 6 отгоняют метанол и растворенный в экстракте метилметакрилат, который возвращают на реакцию. Органический слой с верха экстрактора 5 поступает в ректификационную колонну 7, где отгоняют азеотропную смесь метилметакрилата с водой, возвращаемую на экстракцию. Кубовая жидкость поступает в колонну 8; верхним продуктом является чистый метилметакрилат, а в кубе остаются смолы и полимеры, направляемые на сжигание. Чтобы избежать полимеризации метилметакрилата, на стадиях этерификации и разделения добавляют ингибитор (гидрохинон).


Список литературы

1. Габриэлян О. С., Остроумов И. Г. Химия. М., Дрофа, 2008;

2. Чичибабин А. Е. Основные начала органической химии. М., Госхимиздат, 1963. – 922 с.;

3. Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза. М., Химия. 1988. – 592 с.;

4. Паушкин Я. М., Адельсон С. В., Вишнякова Т. П. Технология нефтехимического синтеза. М., 1973. – 448 с.;

5. Юкельсон И. И. Технология основного органического синтеза. М., «Химия», 1968.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:45:05 06 ноября 2021
.
.01:45:04 06 ноября 2021
.
.01:45:02 06 ноября 2021
.
.01:45:01 06 ноября 2021
.
.01:44:59 06 ноября 2021

Смотреть все комментарии (12)
Работы, похожие на Реферат: Синтез и превращения азотпроизводных карбоновых кислот

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294144)
Комментарии (4230)
Copyright © 2005-2022 HEKIMA.RU [email protected] реклама на сайте