Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Геометрия

Название: Геометрия
Раздел: Рефераты по математике
Тип: реферат Добавлен 02:10:13 05 октября 2005 Похожие работы
Просмотров: 867 Комментариев: 22 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать

БИЛЕТ 6 Отрезки параллельных прямых, заключенные м/у параллельными плоскостями, равны.

Для док-ва рассмотрим отрезки АВ и СD двух параллельных прямых, заключенные м/у параллельными плоскостями a и b. Докажем, АВ=СD. Плоскость j, проходящая ч/з параллельные прямые АВ и СD, пересекается с плоскостями a и b по параллельным прямым АС и ВD. Таким образом, в четырехугольнике ABDC противолеж. стор. паралл., т.е. ABDC-параллел-м

Но в пар-ме прот. леж. стороны равны, значит AB=CD.

Sп.п. =2pR(H+R)

БИЛЕТ 5 Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

Для док-ва данного св-ва рассмотрим прямые а и b , по которым параллельные плоскости a и b пересекаются с плоскостью j. Докажем, что а|| b.

Эти прямые лежат в одной плоскости (j) и не пересекаются. В самом деле, если бы прямые а и b пересекались, то пл. a и b имели бы общ. точку, что невозможно, т.к. a||b. Итак, прямые а и b лежат в одной плоскости и не пересекаются, а|| b.

2. Vпирамиды = 1/3*Sосн. *H

БИЛЕТ 4 ОПРЕДЕЛЕНИЕ. Две плоскости называются параллельными, если они не пересекаются.

ТЕОРЕМА. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Док-во: Рассмотрим

две плоскости a и b. В

плоскости a лежат

пересекающиеся в т.М

прямые a и b, а в b -

- прямые а1 и b1 ,

причем а|| а1 и b|| b1 .

Докажем, что плоскос.

-ти a и b не параллель

ны. Тогда они перес.

по прямой с. Мы получили, что плоскость a проходит ч/з прямую а, параллельную плоскости b, и пересекает плоскость b по прямой с. Отсюда следует, что

а|| с.

Но плоскость a проходит также ч/з прямую b, параллельную плоскости b. Поэтому b || с. Таким обр. ч/з т.М проходят две прямые а и b, || с. Но это невозможно, т.к. по теореме о параллельных прямых ч/з т. М проходит только одна прямая || с.

Значит, наше допущение неверно и a||b. Ч.Т.Д.

- - - - - - - -

БИЛЕТ 3 ОПРЕДЕЛЕНИЕ. Прямая и плоскость

называются параллельными, если они не имеют общих точек.

ТЕОРЕМА. Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости.

Док-во: Пусть a-плоскость,

а - не лежащая в ней прямая

и а1 - прямая в плоскости a,

параллельная прямой а.

Проведем плоскость a1 ч/з

прямые а и а1 .

Она отлична от a,

т.к. прямая а не ле-

жит в плоскости a. Плоскости a и a1 пересекаются по прямой а1 . Если бы прямая а пересекала плоскость a, то точка пересечения принадлежала бы прямой а1 . Но это невозможно, т.к. прямые а и а1 параллель-

ны. Итак, прямая а не пересекает плоскость a, а значит, параллельна плоскости a. Ч.Т.Д.

2. Vпараллелепипеда = Sосн. *H

БИЛЕТ 2 ОПРЕДЕЛЕНИЕ. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

ТЕОРЕМА. Через точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Док-во: проведем ч/з а и

М плоскость a, а ч/з М в

в плоскости a прямую

b|| a. Докажем, что b|| a

единственна.

Допустим, что существует другая прямая b2 || a, и

проходящая ч/з т.М. Через b2 и а можно провести

плоскость a2 , которая проходит ч/з М и а, след-но,

по Т.14.1(ЧЕРЕЗ ПРЯМ. И ТОЧКУ НЕ ЛЕЖ. НА

ЭТОЙ ПРЯМОЙ МОЖНО ПРОВЕСТИ ПЛОСКОСТЬ И ПРИТОМ ТОЛЬКО ОДНУ) она

совпадает с a. По аксиоме о параллельных

прямых b2 и а совпадают. Ч.Т.Д.

2. Vус.кон. =1/3*pH(R1 2 +R1 R2 +R2 2 )

БИЛЕТ 1 А1 Какова бы ни была плоскость, существуют точки принадлежащие этой плоскости

и точки, не принадлежащие ей.

А2 Если две различные плоскости имеют общую

точку, то они пересекаются по прямой.

А3 Если две различные прямые имеют общую

точку, то ч/з них можно провести плоскость, и

притом только одну.

2. Sп.п. =Sбок. +Sосн. ; Sбок. =Pосн. *A

БИЛЕТ 12 ОПРЕДЕЛЕНИЕ: Две пересекающиеся плоскости называются перпендикулярными, если угол м/у ними равен 900 .

ТЕОРЕМА: Если одна из двух плоскостей проходит ч/з прямую,перпендикулярную к др.

плоскости, то такие плоскости перпендикулярны.

Док-во: Рассмотрим плоскости a и b такие, что плоскость a проходит ч/з прямую АВ, перпендикулярную к плоскости b и пересекающуюся с ней в точке А. Докажем, что a^b. Плоскости a и b пересекаются по прямой АС, причем АВ^АС, Т.к. по усл. АВ^b, и, значит, прямая АВ^ к любой прямой, лежащей в плоскости b.

Проведем в плоскости b прямую АD,^АС. Тогда ÐBAD - линейный угол двугранного угла, образованного при пересечении плоскостей a и b. Но ÐBAD=900 (т.к. AB^b). След-но, угол м/у плоскостями a и b равен 900 , т.е. a^b. Ч.Т.Д.

Sбок =P*a (а - бок. ребро, Р-периметр)

БИЛЕТ 11 ТЕОРЕМА: Если две прямые перпендикулярны плоскости, то они параллельны.

Док-во: Рассмотрим прямые а и b , перпендикулярные к плоскости a. Докажем, что а ½½b .

Через какую-нибудь точку М прямой b проведем прямую b1 , параллельную прямой a. Докажем, что прямая b1 совпадает с прямой b. Тем самым будет доказано, что a½½b. Допустим, что прямые b и b1 не совпадают. Тогда в плоскости b, содержащей прямые b и b1 , ч/з точку М проходят две прямые, перпендикулярные к прямой c, по которой пересекаются плоскости a и b. Но это невозможно, след-но, a½½b. Ч.Т.Д.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


БИЛЕТ 13 ОПРЕДЕЛЕНИЕ: Расстояние м/у одной из скрещивающихся прямых и плоскостью, проходящей ч/з другую прямую параллельно первой, называется расстоянием м/у скрещивающимися прямыми.

Sполн =Sбок +2Sосн ; Sбок =P*H(ребро)

БИЛЕТ 14 ОПРЕДЕЛЕНИЕ: Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае наклонной.

ТЕОРЕМА: Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Док-во: Бок.грани прямой призмы - прямоугольники, основания которых - стороны основания призмы, а высоты равны высоте h призмы. Площадь боковой поверхности призмы равна сумме площадей указанных прямоугольников, т.е. равна сумме произведений сторон основания на высоту h . Вынося множитель h за скобки, получим в скобках сумму сторон основания призмы, т.е. его периметр Р. Итак, Sбок =P*h. Ч.Т.Д.

- - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - -

БИЛЕТ 15 Рассмотрим два равных параллелограмма ABCD и A1 B1 C1 D1 , расположен-

ных в плоскостях так, что отрезки AA1 ,BB1 ,CC1 , и

DD1 параллельны.

Поверхность составленная из двух равных параллелограммов ABCD и A1 B1 C1 D1 и четырех параллелограммов называется параллелепипедом м обозначается ABCDA1 ..D1 .

Параллелограммы, из которых составлен параллелепипед, называются гранями , их стороны - ребрами , а вершины параллелограммов - вершинами параллелепипеда .

ТЕОРЕМА: Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Док-во: Рассмотрим четырехугольник A1 D1 CB, диагонали которого являются диагоналями параллелепипеда ABCDA1 ..D1 . Т.к. A1 D1 ½½ BC и

A1 D1 =BC, то A1 D1 CB - параллелограмм. Поэтому диагонали A1 C и D1 B пересекаются в некоторой точке О и этой точкой делятся пополам.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

БИЛЕТ 18 Рассмотрим многоугольник A1 A2 ..An

и точку P не лежащую в плоскости этого многоугольника. Соединив точку P отрезками с вершинами многоугольника, получим n треуголь-

ников: PA1 A2 ,PA2 A3 ,...,PAn A1 .

Многогранник, составленный из n -угольника A1 A2 ..An и n треугольников, называется пирамидой

Многоугольник A1 A2 ..An называется основанием , а треугольники - боковыми гранями пирамиды. Точка P называется вершиной пирамиды, а отрезки PA1 , PA2 , ..., Pan - ее боковыми ребрами.

ТЕОРЕМА: Плоскость, параллельная основанию пирамиды и пересекающая ее, отсекает подобную пирамиду.

Док-во: S-вершина пирамид

A - верш.основания и A1 -

точка пересечения секущей

плоскости с боковым ребр.

SA. Подвергнем пирамиду

преобразованию гомотетии

относительно вершины S с

коэф. гомотет. k=SA1 /SA

При этом плоск-ть основания переходит в паралл. плоск-ть, проходящую ч/з точку A1 , т.е. в секущую

плоскость, а след-но, вся пирамида - в отсекаемую это плоскостью часть. Т.к. гомотет. есть преобразование подобия, то отсек. часть явл

пирамид., подобной данной. Ч.Т.Д.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

БИЛЕТ 17 ОПРЕДЕЛЕНИЕ: Параллелепипед называется прямоугольным , если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

ТЕОРЕМА: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Док-во: Докажем,

что

AC1 2 =AB2 +AD2 +AA1 2

Так как ребро CC1

перпендикулярно

к основанию ABCD,

то ÐACC1 -прямой.

Из прямоугольного

треугольника ACC1

по теореме Пифагора получаем AC1 2 =AC2 +CC1 2 .

Но AC -диагональ прямоугольника ABCD, поэтому AC2 =AB2 +AD2 . Кроме того, CC1 =AA1 .

След-но AC1 2 =AB2 +AD2 +AA1 2 Ч.Т.Д.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

БИЛЕТ 16 ТЕОРЕМА: Противолежащие грани параллелепипеда параллельны и равны.

Док-во: Докажем равенство граней ABB1 A1 и DCC1 D параллелепипеда ABCA1 ..D1 . Т.к. ABCD и ADD1 A1 - параллелограммы, то AB½½DC и AA1 ½½DD1 . Таким обр., две пересекающиеся прямые AB и AA1 одной грани соответственно параллельны двум прямым CD и DD1 другой грани. Отсюда по признаку параллельности плоск.

следует, что грани ABB1 A1 и DCC1 D1 параллельны.

Докажем равенство этих граней. Т.к. все грани параллелепипеда - параллелограммы, то AB=DC и AA1 =DD1 . По той же причине стороны углов A1 AB и D1 DC соответственно сонаправлены, и, значит, эти углы равны. Таким обр., две смежные стороны и Ð м/у ними паралл-ма ABB1 A1 соотв.

равны двум смежным сторонам у Ð м/у ними пар-ма DCC1 D1 , поэтому эти параллелограммы равны

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:22:14 02 ноября 2021
.
.01:22:12 02 ноября 2021
.
.01:22:12 02 ноября 2021
.
.01:22:12 02 ноября 2021
.
.01:22:11 02 ноября 2021

Смотреть все комментарии (22)
Работы, похожие на Реферат: Геометрия

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287784)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте