Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Шпаргалка: Лекции переходящие в шпоры Алгебра и геометрия

Название: Лекции переходящие в шпоры Алгебра и геометрия
Раздел: Рефераты по математике
Тип: шпаргалка Добавлен 21:13:56 29 июня 2005 Похожие работы
Просмотров: 787 Комментариев: 21 Оценило: 9 человек Средний балл: 3.8 Оценка: 4     Скачать

1.Матрицы. Терминология и обозначения.

Матрицей размера (mxn) называется набор m×n чисел – элементов м-цы Ai,j, записанных в виде прямоугольной таблицы:

Набор аi1, ai2, ain – наз iтой строкой м-цы. Набор a1j, a2j, amj – jтым столбцом.

М-ца размером 1хп – называется строкой, вектором; м-ца размером mx1 – столбцом. Если размерность пхп – матрица называется квадратной. Набор элементов а11, а22, апп образует главную диагональ м-цы. Набор а1п, а1,п-1, ап1 – побочную диагональ. М-ца все эл-ты, которой = 0 наз. нулевой. Квадратная м-ца, элементы главной диагонали которой равны 1, а все остальные – 0, называется единичной, обозн.: Е

Матрицы: А(I,j) и B(I,J) называется равными, если равны их размеры и их элеме6нты в одинаковых позициях совпадают.

2.Действия с матрицами

1) Сложение

Суммой м-ц А(I,j) и B(I,J) наз. м-ца С(I,J) элементы кот, выч по формуле:

Сij=Aij+Bij (I=1…m, j = 1…n)

C=A+B (размер всех м-ц: mxn)

2) умножение м-цы на число

Произведение м-цы А = (Aij) размера mxn на число С называется матрица: B=(Bij) размера mxn, элементы кот, выч. по формуле:

Вij=С×Aij (I=1…m, j = 1…n)

В=С×А

вычитание:

С=А+(-)В = А-В

3) умножение м-ц

А=(Aik), B=(Bkj) – квадратные м-цы порядка n. Произведением А на В называют м-цу С= (Сij) элементы, кот выч. по формуле:

Сij = Ai1×B1j+… Ain×BnJ

С=АВ. Можно записать так:

Порядок сомножителей в матрице существенен: АВ не равно ВА

Св-ва умножения м-цы:

(АВ)С=А(ВС)

А(В+С)=АВ+АВ, (А+В)С=АС+ВС

Произведение двух прямоугольных матриц существует, если их внутренние размеры (число столбцов первой, и число строк второй) равны.

3.Порядки суммирования. Транспонирование м-цы

Сумму Н всех элементов квадратной м-цы А можно вычислить 2 мя способами:

1. Находя сумму элементов каждого столбца и складывая полученные суммы:

2. Находя сумму элементов каждой строки и складывая эти суммы:

отсюда вытекает, что

порядок суммирования в двойной сумме можно менять.

Матрица

называется транспонированной по отношению к м-це А=

Обозначается АТ . При транспонировании строки переходят в столбцы, а столбцы в строки и если А размером mxn, то АТ будет размером nxm

Св-ва операции транспонирования.

1 (АТ )Т

2 (А+В)ТТТ

3 (СА)Т =САТ (С-число)

4 (АВ)ТТ ×ВТ

4.Элементарные преобразования матрицы.

1 Переставление двух строк

2 Умножение строки на не равное 0 число В

3 Прибавление к строке матрицы другой ее строки, умноженной на число С.

Также производят элементарные преобразования столбцов.

5.Матрицы элементарных преобразований.

С элементарными преобразованиями тесно связаны квадратные матрицы элементарных преобразований. Они бывают следующих типов:

1 м-цы получающиеся из единичных путем перестановки двух любых строк например м-ца:

получена перестановкой 2 и 4 строки

2 тип. м-цы получающиеся из единичной заменой диагонального элемента на произвольное не нулевое число:

отличается от единичной элементом В во второй строке

3 тип отличающиеся лишь одним недиагональным не нулевым элементом:

Основное св-во матриц элементарных преобразований Элементарное преобразование произвольной матрицы равносильно умножению этой м-цы на матрицу элементарных преобразований

Элементарные преобразования строк м-цы А

1 умножение м-цы А на м-цу 1 типа слева переставляет строки с номерами I,j

2 Умножение м-цы А на м-цу второго типа слева равносильно умножению j строки м-цы А на число В

3 прибавление к jстороке м-цы А ее iтой строки, умноженной на число С равносильно умножению м-цы А на м-цу 3 типа слева

Элементарные преобразования столбцов м-цы А

1 умножение м-цы А на м-цу 1 типа справа переставляет столбцы с номерами I,j

2 Умножение м-цы А на м-цу второго типа справа равносильно умножению j столбца м-цы А на число В.

3 прибавление к j столбцу м-цы А ее I того столбца, умноженного на число С равносильно умножению м-цы А на м-цу 3 типа справа.

6.Определители

С каждой квадратной матрицей связано некое число наз. определителем.

Определителем м-цы второго порядка:

наз число: а11×а22-а12×а21

Определитель м-цы третьего порядка:

=

=

также можно восп правилами треугольника:

Предположив, что определитель м-цы порядка меньше n уже известен, определитель м-цы порядка n будет равен:

D= a11×M11-a21×M21+…+(-1)n+1 ×an1×Mn1

где Мi1 – определитель м-цы порядка n-1, это число называется дополнительным минором. Подобная м-ца получается из А путем вычеркивания 1 столбца и j строки. Это называется разложением определителя по 1 ому столбцу.

число: Аij=(-1)I +1 ×Mij называется алгебраическим дополнением эл-та аij в определителе [А] с учетом алгебр. доп ф-лу нахождения определителя можно записать так:

Определитель – сумма попарных произведений эл-тов произвольного столбца на их алгебраический дополнитель.

    Свойства определителя

1 При транспонировании матрицы определитель не изменяется: [AT ]=[А]

отсюда вытекает, что строка и столбец равноправны с точки зрения свойств определителя.

2 Линейность

Если в определителе DI является линейной комбинацией 2-х строк:

тогда D=fD’+lD’’

где:

отличаются от D только I-тыми строками.

3 Антисимметричность если определитель В* получен из опр В перестановкой строк, то В* = -В

4 Определитель матрицы с двумя одинаковыми строками равен 0

5 Умножение строки определителя на число равносильно умножению самого определителя на это число

6 определитель с 0 строкой = 0

7 определитель, одна из строк которого = произв другой строки на число не равное 0 = 0. (Число выносится за определитель далее по св-ву 4)

8 Если к строке определителя прибавить другую его строку, умноженную на какое либо число, то полученный определитель будет равен исходному.

9 Сумма произведения эл-тов строки определителя на алгебр. дополнение соответствующих элементов другой строки опр = 0

8. Обратная матрица

Квадратная матрица наз. невырожденной, если ее определитель не равен 0.

М-ца В, полученная из невырожд м-цы А по правилу:

В позицию ij м-цы В помещается число = алгебраическому дополнению м-цы Aji, эл-та аji в м-це А.

М-ца В наз. союзной или присоединенной к м-це А и обладает следующими св-вами:

АВ=ВА=[А]I (I-единичная матрица)

Матрица А-1 =1/[А]В называется обратной м-це А. Отсюда вытекает равенство:

АА-1 =I, А-1 А=I

М-цу А-1 можно рассматривать как решение 2х матричных уравнений АХ=I, ХА=I, где - неизвестная матрица.

Произвольную невырожденную м-цу элементарными преобразованиями строк можно привести к единичной матрице

1 Привести к треугольному виду

2 Диагональ матрицы преобр 2 вида приводится к равенству единицам

3 Преобразованиями 3 го типа, прибавляя к п-1 строке последнюю умноженную на –а1п, -а2п…-ап-1п, приводится к матрице у которой все эл-ты п-ного столбца, кроме последнего равны 0 и т. д.

2 метод построения обратной м-цы путем составления расширенной матрицы (метод Жордана)

1 составляется расширенная матрица, приписывая к матрице А единичную матрицу I того же порядка т. е. получаем м-цу (А|I) элементарными преобр строк м-ца А приводится к треугольному виду, а потом к единичному, полученаая на месте I м-цы м-цы С – является обратной исходной матрице А

15. Понятия связанного и свободного векторов.

Рассмотрим т А и т. В, по соединяющему их отрезку можно перемещать в двух направлениях: если считать А началом, а т. В – концем, то получим направленный отрезок АВ, а если т. В- начало, а т. А – конец, то направленный отрезок ВА. Направленный отрезок часто наз. связанными или закрепленными векторами. В случае, когда начальная и конечная точка совпадают, т. е. А=В, связанный вектор наз. нулевым..

Связанные векторы АВ и СД равны, если середины отрезков АД и ВС совпадают обоз: АВ=СД, отметим, что в случае, когда т. А,В,С,Д не лежат на одной прямой это равносильно тому, что четырехугольник АВСД – параллелограмм. Поэтому равные связанные в-ры имеют равные длины.

Св-ва связанных в-ров:

1 Каждый связанный в-р равен самому себе АВ=АВ

2 Если АВ=СД, то и СД = АВ

3 Если АВ=СД и СД=EF, то AB=EF

От каждой точки можно отложить связанный в-р равный исходному.

Свободные в-ры – те, начальную точку которых можно выбирать произвольно. или, что тоже самое, которые можно произвольно переносить параллельно самим себе. Свободный в-р однозначно определяется заданием связанного в-ра АВ.

Обоз свободные в-ры малыми латинскими буквами и стрелкой сверху. Нуль-вектор обоз 0 со стрелкой.

Если задан в-р а и т. А, сущ ровно 1 т. В, для которых АВ=а. Операция построения связанного в-ра АВ, для которой выполнено это равенство называется откладывание свободного в-ра а от т. А. Связанные в-ры, полученные в результате операции откладывания равны между собой. И имеют одинаковую длину. Длина свободного в-ра а обоз |f|, длина нуль-в-ра=0, Если а=в, то и длины их равны., обратное неверно!!!.

16. Линейные операции над в-рами

1 сложение в-ров

Пусть даны в-ры: а и в

от т. О отложим в-р ОА=а, от полученной т. А отложим в-р АВ=в. Полученный в результате в-р ОВ называется суммой векторов а и в и обозн: а+в. Сложение в-ров коммутативно: а+в=в+а. Существует два правила построения суммы: правило треугольник и правило параллелограмма.

Сложение в-ров ассоциативно, т. е. для любых в-ров а, в, с вып рав-во:

(а+в)+с=а+(в+с),

2 Умножение в-ра на число

Свободные в-ра а и в наз коллинеарными, если определяющие их связанные в-ры лежат на параллельных или совпадающих прямых. Если отложить коллинеарные в-ры а и в от общей т. О: ОА=а, ОВ=в, то т. О, А, В будут лежать на одной прямой. Возможны 2 случая: т. А и В располагаются по одну сторону от т. О или по разные стороны. В первом случае в-ры а и в наз одинаково направленными, во втором – противоположно направленными. если в-ры имеют равные длины и одинаково направлены, то они равны.

Произведением в-ра а на число С наз в-р в, такой, что

1 длина его |b|=|C|×|a|

2в-ры а и в одинаково (противоположно) направлены, если С>0 (C<0). – М.: Обозн в=С×а. При С=0 положим, что Са=0.

Св-ва умножения

1 (С+Д)×а=С×а+Д×а

2 С×(Д×а)=(С×Д)×а

3 С×(а+в)=С×а+С×в (Си Д любые дейст. числа, а и в – в-ры)

В-р, длина которого = 1 называется единичным в-ром или ортом и обоз а0, его длина |a0|=1

Если а ¹ 0, то а0 = 1/|a|, есть единичный в-р (орт) направления в-ра а.

Противоположный в-р (-а) –а || а, противоположно направлен в-ру а

а+(-а)=0; -а= (-1)×а

3 вычитание в-ров

разностью в-ров а и в наз в-р с, такой, что в+с =а

а- уменьшаемый, в- вычитаемый, с- разность.

1 разность в-ров а и в явл диагональю параллелограмма, построенного на в-рах а и в, направленная в сторону уменьшаемого в-ра.

Пусть а и в ненулевые в-ры. отложим их от т. О, а=ОА, в=ОВ. Углом между в-рами а и в наз. наименьший угол между в-рами ОА и ОВ

Если угол между а и в = П/2 эти в-ры наз ортогональными.

17. Координаты и компоненты в-ра

Обозначаем в прямоугольной декартовой системе координат положительные направления осей OX,OY,OZ единичными в-рами : i, j, k, попарно ортогональными и равными единице.

Найдутся числа x,y,z, для которых:

а = xi+yj+zk (2) Эта ф-ла наз. разложением в-ра по орто-базису

Эти в-ры называются ортонормированным базисом. Для каждого в-ра а разложение по орто-базису единственно, т. е. коэффициенты x,y,z в разложении в-ра а по векторам i,j,k определены однозначно. Эти коэффициенты наз координатами в-ра а, они совпадают с координатами z,y,x т. А

a={x,y,z} это означает, что в-р однозначно задается упорядоченной тройкой своих коэффициентов

В-ры xi, yj, zk, сумма которых = а, называются компонентами в-ры а. Два в-ра а и в равны тогда и только тогда, когда равны все их компоненты.

Радиус-вектором в т. М(x,y,z) называется вектор r=xi+yj+zk, идущий из начала коорд т. О в т. М

Линейные операции над в-рами в координатах.

Имеем 2 в-ра а={x1,y1,z1} b={x2,y2,z2}, таких, что а=x1i+y1j+z1k, b=x2i+y2j+xz2k

сумма будет:

a+b=(x1+x2)I+(y1+y2)j+(z1+z2)k

a+b={x1+x2, y1+y2, z1+z2}

при сложении в-ров их координаты попарно складываются. Для вычитания так же.

С×а={Cx1,Cy1,Cz1}

при умножении на число, все его координаты умножаются на это число.

В-ры а и в коллинеарны тогла и только тогда, когда их координаты пропорциональны.

18. Проекция в-ра на ось

Прямая l, с заданным на ней направлением называется осью.

Величиной направленного отрезка Ав на оси l наз. число, обозначаемое: (АВ) и равное длине отрезка АВ, взятом со знаком +, если напр АВ совп с напр. прямой и со знаком – если не совп.

Проекцией в-ра АВ на ось l наз величина, направленного отрезка СД, построенного опусканием перпендикуляров из в-ра АВ на ось l, обозн: Prl AB=(СД)

Свойства проекции:

1 Проекция в-ра АВ на какую-либо ось l = произведению длины в-ра на косинус угла между осью и этим в-ром.

Prl AB=|AB|×cosa

2 Проекция на ось l в-ра С×а =С×Prl а, С- произв. число.

3 Проекция суммы в-ров на какую либо ось = сумме проекции в-ров на эту же ось

19. Скалярное пр-е в-ра

20. Векторное пр-е в-ра

21. Смешанное пр-е в-ров

22. Деление отрезка в данном отношении

т М ¹ В делит отрезок [АВ] в отношении l, если АМ = l×АВ . Т. М расположена на Ав при этом, если

1 М внутренняя точка АВ, то l >0 (случайц внутреннего деления)

2 М=А, l = 0

3 М лежит вне Ав, l <0 (случай внешнего деления)

Других вариантов расположения т. М быть не может, и ни водном из вариантов l¹ -1

Если А(r1 ), B(r2 ), M(r ) – точки пространства и М – делит АВ в отн l, тогда:

это соотношение в координатной форме имеет вид: для А(x1,y1,z1), B(x2,y2,z2) и M(x,y,z)

Если М – середина АВ, то l =1Коорд x,y,z середины отрезка АВ выглядят так:

Если т А В принадлежат плоскости ОХУ, то аппликата т А и В и М = 0 и задачу решают первые 2 ф-лы ,а если А и В М лежат на плоскости ОХ, тор первой ф-лой.

23. Нормальное уравнение прямой. Общее уравнение прямой

Если взять на плоскости фиксированную точку О и какую-либо прямую L, то положение этой прямой относительно плоскости будет определено если задать расстояние от нее до т. О, т. е. длину р отрезка ОТ, перпендикуляра из т. О на эту прямую; и единичный вектор n0=1 – перпендикулярный прямой L и направленный из начальной т. О к этой прямой.

Когда текущая т. М движется по прямой L, радиус вектор-r меняется так, что проекция на направление n0 будет постоянной и равной р:

это соотношение выполняется для каждой точки прямой L и нарушается когда т. М лежит вне ее.

Заметив, что: это можно записать так:

(2) полученное ур-е наз. нормальным (нормированным) уравнением прямой в векторной форме. Радиус в-р r – произвольной точки прямой наз. текущим радиус в-ром прямой.

Выбрав на плоскости Декартову систему координат и поместив ее начало в т. О, в-ры r, n0 можно записать так:

n0={cosj, sinj}; r={x,y}

уравнение (2) примет вид:

(3) это нормальное уравнение прямой в координатной форме, относительно прямых х и у; оно явл ур-ем 1 степени, тем самым в Декартовой прямоугольной системе всякое положение прямой определяется ур-ем 1 степени относительно переменных х и у верно и обратное.

Уравнение Ax+By+C=0 (4) называется общим уравнением прямой А22 ¹ 0

если домножить его на постоянный множитель m, положа:

m×А= cosj, m×В= sinj, m×С = -р, где:

называется нормирующим множителем.

И уравнение получается нормальным .Общее уравнение (4) определяет прямую как множество точек М плоскости декартовы координаты которых удовлетворяют этому уравнению.

Нормальный в-р прямой - всякий ненулевой (не обязательно- единичный) в-р перпендикулярный этой прямой. Вектор n = {A,B} будет нормальным вектором прямой, заданной ур-ем (4), таким оборазом коэффициенты А и В при текущих координатах х и у являются координатами нормального в-ра этой прямой. Все отсальный нормальные в-ры прямой можно получить умножая в-р n на произвольное ¹ 0 число.

24. Уравнение прямой на плоскости , проходящей через заданную точку перпендикулярно заданному направлению.

Для того, чтобы найти ур-е прЯмой L, проходящей через т. М0, заданную радиус-вектором r0={x0,y0}, перпендикулярную вектору n={A,B}, проведем радиус-вектор r={x,y} в произвольной т. М этой прямой

в-р М0М = r-r0 лежит на прямой L, а значит перпендикулярен в-ру n, поэтому их скалярное пр-е = 0

(r-r0)×n = 0 (8) равенство справедливо для всех т. М принадлежащих прямой и нарушается, если точка на прямой не лежит. Ур-е (8) явл в-рным уравнением исходной прямой выражая это произв, через коорд в-ров получим ур-е прямой в коорд форме:

A(x-x0)+B(y-y0)=0 (9)

25. Исследование уравнения прямой неполные ур-я прямой..

Если хотя бы один из коэффициентов А, В, С ур-я Ах+Ву+С=0 равен 0, ур-е наз. неполным. По виду уравнения прямой можно судить о ее положении на плоксоти ОХУ. Возможны случаи:

1 С=0 L: Ax+By=0 т. О(0,0) удовлетворяет этому уравнению значит прямая проходит через начало координат

2 А=0 L: Ву+С=0 - нормальный в-р n={0,B} перпендикулярен оси ОХ отсюда следует, что прямая параллельна ось ОХ

3 В = 0 L: Ay+C=0 0 - номральный в-р n={А,0} перпендикулярен оси ОY отсюда следует, что прямая параллельна ось ОУ

4 А=0, С=0 L: By=0Ûy=0ÛL=OX

5 B=0, C=0 L: Ax=0Ûx=0ÛL=OY

6 A¹ 0, В ¹ 0, С ¹ 0 L; - не проходит через начало координат и пересекает обе оси.

26. Уравнение прямой с угловым коэффициентом

Если общее уравнение прямой, при В ¹ 0 переписать в виде:

и приравняв:

и получим ур-е с угловым коэффициентом

у=кх+b (10), где число к = tga, a - величина угла наклона прямой к оси ОХ, угол, отсчитываемый в направлении противоположном движению часовой стрелки от положительного направления оси ОХ до данной прямой.

В случае L||ОХ, или L=OX, a=0

В случае L||ОY, или L=OY, a=П/2 и угловой коэффициент не существует.

27. Ур-е прямой, проход через данную т., с данным угловым коэфф. Ур-е прямой проход через две данные точки.

Если прямая задана т М0(х0, у0) и угловым коэффициентом к, тогда на основании ур-я (10) можно получить ур-е искомой прямой:

у-у0=к(х-х0) (11)

Ур-е прямой проходящей через две заданных точки

Зададим прямую точками М1(х1,у1) и М2(х2,у2), х1 ¹ х2. М1 и М2 принадлежат прямой, откуда следует:

у-у1=к(х-х1) для М1и у-у2=к(х-х2) для М2

откуда:

(12) Эта ф-ла позволяет вычисли ть угловой коэффициент, зная коорд двух точек.

Если у1 ¹ у2, то подставляя к из ф-лы (12) в равенство: у-у1=к(х-х1), получаем:

(13) Искомое уравнении прямой, проход через две заданных точки.

28. Расстояние от точки до прямой на плоскости

Расстоянием от т. М* до прямой L наз. длину отрезка М*N – перпендикуляра L^ опущенного из т. М* на эту прямую.

Если М*(х*, у*) – заданная точка,

а - нормальное ур-к прямой L, то расстояние от М* до L выч. по ф-ле:

d=d(M*,L)=|x*cosj+y*sinj-p| (14)

d=d(M*,L)=|rx ×n0 -p|

обозначим через d(M*,L)= rx ×n0 –p= x*cosj+y*sinj-p т. е.: d(M*,L)= |d|

по знаку d можно судить о расположении точек О и М*, относительно прямой L:

Если О и М* расположены по разные стороны относительно прямой, то d > 0 , если по одну сторону – то d<0. Величина d называется отклонением т. М* от прямой L.

Если прямая задана общим уравнением, то расстояние вычисляется по ф-ле:

29. Уравнение прямой в отрезках

Рассматривая общее ур-е прямой, при А,В,С ¹ 0, переписав его в виде:

и положив

а = - С/A в = - С/В получим ур-е прямой в отрезках:

(16)

Для нахождения т. М1 пересечения прямой (16) с осью ОХ достаточно решить систему уравнений:

для пересечения с осью ОУ получаем:

Параметры а и в в(16) определяют величину отрезков Ом1 и ОМ2, отсекаемых прямой от осей координат.

30. каноническое уравнение прямой

Ненулевой в-р коллинеарный прямой называется ее направляющим в-ром.

Из аксиом следует, что через заданную точку проходит только одна прямая с заданным направляющим в-ром.

Прямая L, с направл. в-ром S проходящая через т. М0(х0, у0). проходит через т. М(х,у) тогда и только тогда, когда в-ры М0М и S 0 коллинеарны т. е. М0М=tS, t'R) (17) Это ур-е наз векторным уравнением прямой.

Если М0(х0, у0), М(х,у) – текущие точки прямой L; S={m,n} – направляющий вектор прямой , тогда в-р М0М = {x-x0, y-y0}

Записав условия коллинеарности из (17) в векторной форме получим: x-x0=tm, y-y0=tn или:

(18) Ур-е наз. каноническим ур-ем прямой на плоскости.

Обозначает лишь пропорциональность и в случае, когда m = 0 или n = 0 равносильно ур-ям: х-х0=0 или у-у0=0 соответственно.

31. Параметрическое уравнение прямой на плоскости.

Представляет собой другую форму записи ур-я (17)

пусть r=ОМ, а r0=OM0 – радиус в-ры точек М и М0 относительно начала координат, тогда М0М = r-r0 и ур-е (17) зап. в виде: r=r0+tS, t'R

или в координатной форме, в системе ОХУ:

(20), t'R

ур-я (19) и (20) наз параметрическими уравнениями прямой на плоскости в векторной и координатной формах.

32. Угол между двумя прямыми на плоскости.

Условия параллельности и перпендикулярности двух прямых на плоскости

а) прямые L1 L2 заданы общими уравнениями

L1:=А1х+В1у+С1=0, А12 +В12 >0

L2:=А2х+В2у+С2=0, А22 +В22 >0

j(угол между ними)= углу между их нормальными в-рами n1 ={A1,B1} и n2={A2,B2}

оттуда вытекает, что

L1|| L2 Û n1 || n2Û n1 = ln2

A1=lA2, B1=lB2

L1 ^ L2 Û n1 ^ n2Û n1×n2 =0 Û

Û A1×A2+B1×B2=0

б) прямые заданы каноническим уравнением

угол между ними равен углу между их направляющими векторами:

S1={m1,n1} S2{m2,n2} поэтому:

L1|| L2 Û S1 || S2

L1 ^ L2 Û S1 ^ S2 Û S1×S2=0 Û

m1×m2+n1×n2=0

в) прямые заданы ур-ем с угловым коэффициентом

L1:= у=к1х+в1

L2:= у=к2х+в2

за угол между прямыми принимаемся наименьший угол на который нужно повернуть прямую L1 против часовой стрелки до совмещения с прямой L2 вокруг т. пересечения прямых.

Через a1 и a2 обоз углы наклона прямых L1 и L2 к оси ОХ

Угол между прямыми j= a2- a1

tga1=k1, tga2=k2

L1|| L2 Ûa1 = a2 (j=0) Û k1=k2

L1 ^L2 Ûj=П/2

k2= -1/k1

33. Нормальное уравнение плоскости. Общее уравнение плоскости.

Зафиксировав неку т. О в пространстве положение плоскости П будет определено, если задать следующие величины: расстояние до нее от начальной т. О, т. е. длину р отрезка ОТ, перпендикуляра, опущенного из т. О на плоскость П и единичный в-р n0, |n0|=1, перпендикулярный плоскости П и направленный из начальной т. О к этой плоскости.

Когда текущая т. М движется по плоскости ее радиус в-р r меняется так, что

prn0 OM =p (1)

это соотношение вып для каждой т. принадлежащей плоскости, а для не принадлежащей – нарушается.

(1) являет уравнением этой Плоскости П

prn0 OM =r×n0 или r×n0-p=0 (2)

ур-е (2) – нормальное уравнение плоскости в векторной форме. Радиус-вектор r произвольной т. плоскости наз. ее текущим радиус вектором.

Введем в пространстве прямоугольную Декартову систему координат, поместив ее начало в т. О, тогда в-ры r и n0 можно записать так: n0={cosa, cosb, cosd);

r={x,y,z}

Ур-е (2) примет вид:

x×cosa +y×cosb+z×cosd-p=0 (3) – нормальное уравнение плоскости в координатной форме

Особенности ур-я (3)

1 Сумма квадратов коэффициентов при текущих координатах = 1:

cos2 a+cos2 b+cos2 d=1

2 свободный член (-р) £0

Относительно переменных x,y,z – ур-е (3) явл. ур-ем 1 степени.

Всякое ур-е 1 степени определяет плоскость

Ур-е:

Ax+By+Cz+D=0 (4) – уравнение плоскости общего вида.

Всякий ненулевой, перпендикулярный плоскости вектор наз. нормальным вектором этой плоскости. В-р n={A,B,C} нормальный в-р плоскости, заданной ур-ем (4), таким образом коэффициенты при координатах в ур-е (4) являются координатами нормального в-ра этой плоскости. Все другие нормальные вектора получают из в-ра n умножая его на любое ¹ 0 число.

34. Ур-е плоскости проходящей через заданную точку перпендикулярно заданному направлению

Уравнение плоскости, проходящей через т. М0, заданной r0={x0,y0,x0}, перпендикулярной в-ру n={A,B,C}строится так:

Проведем радиус в-р r={x,y,z} в произвольную т. М этой плоскости. В-р М0М=r-r0 лежит в плоскости П и значит перпендикулярен в-ру n., поэтому их скалярное пр-е = 0

(r-r0)×n=0 (1) Рав-во (1) справедливо для всех т. М плоскости П и нарушается если М не принадлежит этой плоскости, тем самым – (1) – векторное уравнение искомой плоскости, в координатной форме это выражается так:

A(x-x0)+B(y-y0)+C(z-z0)+D=0

35. Исследование ур-я плоскости. неполное ур-е плоскости

По виду общего ур-я можно судить о том как лежит плоскость относительно системы координат OXYZ. Если хотя бы один из коэффициентов общего ур-я = 0, то оно наз. неполным.

Возможны случаи:

1 D=0 П: Ax+By+Сz=0 т. О(0,0) удовлетворяет этому уравнению значит прямая проходит через начало координат

2 А=0 П: Ву+ Сz +D=0 - нормальный в-р n={0,B,C} перпендикулярен оси ОХ отсюда следует, что плоскость параллельна оси ОХ

3 В = 0 П: Aх + Cz +D=0 - нормальный в-р n={А,0,С} перпендикулярен оси ОY отсюда следует, что плоскость параллельна оси ОУ

4 С=0 П: Ax+By+D=0, n={А,B,0} перпендикулярен OZÛП ||OZ плоскость параллельна оси OZ

5 А=0, C=0 П: By+D=0Ûy= - D/BÛ тогда из 2 П||ОХ, из 4 П||OZ значит П||OXZ

6 А=0, В=0 П: Cz+D=0Ûz= - D/CÛ П||ОХ, П||OY значит П||OXY

7 C=0, В=0 П: Ax+D=0Ûx= - D/AÛ П||ОZ, П||OY значит П||OYZ

8 A=0, В=0, D=0 П: Cz=0 Ûz=0Û П||ОXY, OÎ П значит П= OXY

9 A=0, C=0, D=0 П: By=0 Ûy=0Û П||ОXZ, OÎ П значит П= OXZ

10 B=0, C=0, D=0 П: Ax=0 Ûx=0Û П||ОXY, OÎ П значит П= OXY

11 A¹ 0, В ¹ 0, С ¹ 0 П; - не параллельна ни одной из осей и пересекает их.

36. Уравнение плоскости проходящей через три данный точки

Даны М1(x1,y1,z1), М2(x2,y2,z2), М3(x3,y3,z3) не лежащие на одной прямой. Пусть М(x,y,z) – точка искомой плоскости.

r1={x1,y1,z1}, r2={x2,y2,z2}, r3={x3,y3,z3} и r={x,y,z} – радиус векторы данных точек.

В силу компланарности в-ров М1М=r-r1, M1M2=r2-r1, M1M3=r3-r1 их смешанное произведение = 0, т. е. радиус в-р т. М удовлетворяет условию:

(r-r1)(r2-r1)(r3-r1)=0 (10)

а ее координаты линейному уравнению:

(11)

ур-е (10) векторное, а ур-е (11) – координатные уравнения искомой плоскости.

37. Уравнение плоскости в отрезках.

Представив общее ур-е плоскости при A,B,C,D¹ 0 в виде:

и положив a= - D/A, b = -D/B, c = -D/C, получим уравнение плоскости в отрезках:

Найдем координаты точек М1, М2, М3 пересечения П с осями OX, OY, OZ

для М1 имеем

x=a, значит М1(а,0,0)

аналогично получаем:

М2(0,в,0): М3(0,0,с)

Значения а,в,с определяют величину отрезков, отсекаемых П на осях координат.

38. Расстояние от точки до плоскости

Пусть М*(x*,y*,z*) – заданная точка,

xcosa+ycosb+cosg-р=0 – заданное уравнение плоскости

расстояние от т. М* до плоскости П выч. по ф-ле:

d=d(M*, П) = |x*cosa+y*cosb+z* cosg| (13)

обозначим через d(M*, П)=r*×n0-p= x*cosa+y*cosb+z* cosg-p. Если т М* и т. О –начало координат лежат по разные стороны от П, то d>0, а если по одну сторону, то d<0, d - отклонение т. М* от плоскости П.

Если П задана общим уравнением, то расстояние от т. М* до П =

39. Угол между двумя плоскостями, условия параллельности и перпендикулярности двух плоскостей.

П1 и П2 две заданные плоскости

П1: A1x+B1y+C1Z+D1=0

П2: A2x+B2y+C2Z+D2=0

A12 +B12 +C12 >0, A22 +B22 +C22 >0

углом между двумя плоскостями будем называть любой из двух смежных двугранных углов образованных этими плоскостями. (в случае параллельности угол между ними равен 0 или П) один из этих двугранных углов = <j между нормальными в-рами: n1={A1,B1,C1} и n2={A2,B2,C2} этих плоскостей.

Отсюда вытекает:

П1 || П2 Û n1 || n2 Û n1=ln2 Û A1=lА2, B1=lB2, C1=lC2

условие параллельности плоскостей

П1 ^ П2 Ûn1^n2 Ûn1×n2=0 ÛA1A2+B1B2 + C1C2=0 условие перпендикулярности плоскостей.

40. параметрические уравнения прямой в пространстве.

Положение прямой в пространстве будет однозначно определено, если задать т. М0 на прямой (при помощи радиус-в-ра r0, относит некоторого фиксированного О) и направляющего в-ра S (S¹ 0), которому прямая параллельна.

Перемещение т. М прямой, соотв ее радиус в-ру ОМ=r ОМ=ОМ0+М0М (1)

М0М||S, M0M=t×S

r=r0+t×S (2)

Введем в пространство прямоугольную декартову систему координат, поместив начало координат в т. О.

т. М0 имеет коорд. (x0,y0,z0); т. M (x,y,z), напр. в-р S={m,n,k}, тогда ур-е записанное в коорд форме:

(3)

Ур-я (2) и (3) наз. параметрическими уравнениями прямой в пространстве в векторной и координатной форме соответственно. Числа m,n,k наз. направляющими коэффициентами этой прямой.

41. Каноническое уравнение прямой в пространстве

Уравнение (2), озн. коллинеарность в-ров r-r0 и S может быть записана и в терминах пропорциональности в-ров.

r-r0={x-x0,y-y0,z-z0}; S={m,n,k}

(4)

Ур-е (4) наз. каноническим ур-ем прямой в пространстве, в нём x0,y0,z0 – коорд. Т. М., лежащей на прямой, а m,n,k – координаты направляющего в-ра прямой.

Система ур-й (4) определяет прямую, как линию пересечения двух плоскостей.

Также как и для канонического уравнения на плоскости ур-е (4) говорит лишь о пропорциональности координат в-ров: r-r0 и S. Если например m=0, то ур-е переходит в ур-е x-x0=0,

если m=0 и n=0, то у р-е будет:

x-x0=0, у-у0=0,

42. Уравнение прямой в пространстве, проходящей через две заданные точки

Еси на до найтить урювнение примой проход. через т. М1(x1,y1,z1) и M2(x2,y2,z2)

Для решения в каноническом виде:

Надо знать коорд одной из точек нах на прямой и направляющий в-р. За т. на прямой можно принять любую , например, М1(x1,y1,z1), за направляющий вектор прямой –

вектор М1М2 = {x2-x1,y2-y1,z2-z1}

Уравнение искомой прямой следует из ур-я (4):

(5)

43. Общее уравнение прямой в пространстве. переход к каноническим уравнениям

Всякие две непараллельные между собой и не совпадающие плоскости, определяют прямую, как линию их пересечения.

Пусть ур-я этих плоскостей в прямоугольной декартовой системе координат OXYZ:

П1: A1x+B1y+C1z+D1=0

П2:A2x+B2y+C2z+D2=0

рассматриваемые совместно:

(6)

Эти уравнения наз. общими уравнениями прямой L, являющийся линией пересечения этих плоскостей. От общий уравнений прямой можно перейти к каноническим, для этого надо знать какую-нибудь точку прямой и её направляющий вектор. точку прямой наёдем из (6), выбирая одну из координат произвольно и решая полученную систему относительно оставшихся 2 координат. Для отыскания направляющего в-ра S прямой, заметим, что этот в-р, направленный по линии пересечения данных плоскостей должен быть перпендикулярен нормальным в-рам n1={A1,B1,C1} и n2{A2,B2,C2} так как векторное произведение n1х n2 перпендикулярно каждому из векторов n1 n2, то в качестве напр. в-ра можно взять в-р S= n1х n2.

Найденные координаты подставляются в ур-е (4)

44. Угол между прямыми в пространстве. Условия параллельности и перпендикулярности двух прямых

<j между двумя прямыми L1, L2 = углу между направляющими в-рами:S1={m1,n1,k1} и S2={m2,n2,k2}, посему:

(8)

Возможные случаи:

1 L1 || L2 отсюда вытекает S1 || S2

(9)

2 L1 ^L2 отсюда вытекает S1 ^S2 = 0ÛÛm1×m2+n1×n2+ к1×к2=0

45. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.

Если дана прямая:

и плоскость:

П: Ax+By+Cz+D=0

<j между прямой и плоскостью называют наименьший из углов, образованных прямой с её проекцией на эту плоскость.

Угол буде равен:

a=углу между нормальным в-ром Плоскости П n и направляющим в-ром прямой S.

возможны случаи:

1 L || П отсюда вытекает S^nÛS×n = 0

Am+Bn+Ck=0 –уравнение параллельности прямой и плоскости.

2 L1 ^L2 отсюда вытекает n || S

- уравнение перпендикулярности прямой и плоскости.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:22:45 02 ноября 2021
.
.01:22:43 02 ноября 2021
.
.01:22:43 02 ноября 2021
.
.01:22:43 02 ноября 2021
.
.01:22:42 02 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Шпаргалка: Лекции переходящие в шпоры Алгебра и геометрия

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287784)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте