Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Математика. Интегралы

Название: Математика. Интегралы
Раздел: Рефераты по математике
Тип: реферат Добавлен 13:38:39 28 июля 2005 Похожие работы
Просмотров: 708 Комментариев: 20 Оценило: 9 человек Средний балл: 3.4 Оценка: 3     Скачать

1.

*1. Говорят, что функция f(x) не убывает (не возрастает) на (a,b), если для любых точек x1 <x2 из (a,b) справедливо неравенство f(x1 )£f(x2 ) (f(x1 )³f(x2 )).

*2. Говорят, что функция f(x) возрастает (убывает) на (a,b), если x1 <x2 из (a,b) справедливо неравенство f(x1 )<f(x2 ) (f(x1 )>f(x2 )). В этом случае функцию называют монотонной на (a,b).

Т1. Дифференцируемая на (a,b) функция f(x) тогда и только тогда не убывает (не возрастает) на (a,b), когда f¢(x)³0 (£0) при любом xÎ(a,b).

Док-во: 1) Достаточность. Пусть f¢(x)³0 (£0) всюду на (a,b). Рассмотрим любые x1 <x2 из (a,b). Функция f(x) дифференцируема (и непрерывна) на [x1 ,x2 ]. По теореме Лагранжа: f(x2 )-f(x1 )=(x2 -x1 )f¢(a), x1 <a<x2 . Т.к. (x2 -x1 )>0, f¢(a)³0 (£0), f(x2 )-f(x1 )³0 (£0), значит, f(x) не убывает (не возрастает) на (a,b). 2) Необходимость. Пусть, например, f(x) не убывает на (a,b), xÎ(a,b), x+DxÎ(a,b), Dx>0. Тогда (f(x+Dx)-f(x))/Dx³0. Переходя к приделу при Dx-0, получим f¢(x)³0. Теорема доказана.

Т2. Для возрастания (убывания) f(x) на (a,b) достаточно, чтобы f¢(x)>0 (<0) при любом xÎ(a,b). Док-во: Тоже что и в Т2.

Замечание1. Обратное к теореме 2 не имеет места, т.е. если f(x) возрастает (убывает) на (a,b), то не всегда f¢(x)>0 (<0) при любом xÎ(a,b).

*3. Прямая х=а называется вертикальной асимптотой графика функций y=f(x), если хотя бы одно из предельных значений или равно +¥ или –¥.

Замечание 2. Непрерывные функции вертикальных асимптот не имеют.

*4. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при x-+¥(–¥), если f(x)=kx+b+a(x), где

Т3. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при x-+¥(–¥), тогда и только тогда, когда существуют , , причем при x-+¥(–¥) наклонная асимптота называется правой (левой). Док-во: Предположим, что кривая y=f(x) имеет наклонную асимптоту y=kx+b при x-+¥, т.е. имеет место равенство f(x)=kx+b+a(x). Тогда . Переходя к пределу при x-+¥, получаем . Далее из f(x)=kx+b+a(x)-b=f(x)-kx-a(x). Переходя к пределу при x-+¥, получаем . Докажем обратное утверждение. Пусть пределы, указанные в теореме, существуют и конечны. Следовательно, f(x)–kx=b+a(x), где a(x)-0, при x-+¥(–¥). Отсюда и получаем представление f(x)=kx+b+a(x). Теорема доказана.

Замечание3. При k=0 прямая y=b называется горизонтальной асимптотой, причем при x-+¥(–¥) – правой (левой).

2.

*1. Точку х0 назовем стандартной для функции f(x), если f(x) дифференцируема в точке x0 и f¢(x0 )=0.

*2. Необходимое условие экстремума. Если функция y=f(x) имеет в точке x0 локальный экстремум, то либо x0 – стационарная точка, либо f не является дифференцируемой в точке x0 .

Замечание 1. Необходимое условие экстремума не является достаточным.

Т1. (Первое достаточное условие экстремума). Пусть y=f(x) дифференцируема в некоторой окрестности точки x0 , кроме, быть может, самой точки x0 , в которой она является непрерывной. Если при переходе x через x0 слева направо f¢(x) меняет знак с + на –, то точка x0 является точкой максимума, при перемене знака с – на + точка x0 является точкой минимума. Док-во: Пусть xÎ(a,b), x¹x0 , (a,b) – достаточно малая окрестность точки x0 . И пусть, например, производная меняет знак с + на –. Покажем что f(x0 )>f(x). По теореме Лагранжа (применительно к отрезку [x,x0 ] или [x0 ,x]) f(x)–f(x0 )=(x- x0 )f¢(a), где a лежит между x0 или x: а) x< x0 Þx- x0 <0, f¢(a)>0Þf(x)–f(x0 )<0Þf(x0 )>f(x); б) x>x0 Þx–x0 >0, f¢(a)<0Þf(x)–f(x0 )<0Þf(x0 )>f(x).

Замечание 2. Если f¢(x) не меняет знака при переходе через точку х0 , то х0 не является точкой экстремума.

Т2. (Второе достаточное условие экстремума). Пусть x0 – стационарная точка функции y=f(x), которая имеет в точке x0 вторую производную. Тогда: 1) f¢¢( x0 )>0Þf имеет в точке x0 локальный минимум. 2) f¢¢( x0 )<0Þf имеет в точке x0 локальный максимум.

3.

*1. График функции y=f(x) называется выпуклым вниз (или вогнутым вверх) в промежутке (a,b), если соответствующая дуга кривой расположена выше касательной в любой точке этой дуги.

*2. График функции y=f(x) называется выпуклым вверх (или вогнутым вниз) в промежутке (a,b), если соответствующая дуга кривой расположена ниже касательной в любой точке этой дуги.

Т1. Пусть y=f(x) имеет на (a,b) конечную 2-ю производную. Тогда: 1) f¢¢(x)>0, "xÎ(a,b)Þграфик f(x) имеет на (a,b) выпуклость, направленную вниз; 2) ) f¢¢(x)<0, "xÎ(a,b)Þграфик f(x) имеет на (a,b) выпуклость, направленную вверх

*3. Точка (c,f(с)) графика функций f(x) называется точкой перегиба, если на (a,c) и (c,b) кривая y=f(x) имеет разные направления выпуклости ((a,b) – достаточно малая окрестность точки c).

Т2. (Необходимое условие перегиба). Если кривая y=f(x) имеет перегиб в точке (c, f(c)) и функция y=f(x) имеет в точке c непрерывную вторую производную, то f¢¢(c)=0.

Замечание1. Необходимое условие перегиба не является достаточным.

Замечание2. В точке перегиба вторая производная может не существовать.

Т3. (Первое достаточное условие перегиба). Пусть y=f(x) имеет вторую производную на cÎ(a,b), f¢¢(c)=0. Если f¢¢(x) имеет на (a,c), (c,b) разные знаки, то (c, f(c)) – точка перегиба графика f(x).

Т4. (Второе условие перегиба). Если y=f(x) имеет в точке конечную третью производную и f¢¢(c)=0, а f¢¢¢(c)¹0, тогда (c, f(c)) – точка перегиба графика f(x).

4.

*1. Первообразная от функции f(x) в данном интервале называется функция F(x), производная которой равна данной функции: F¢(x)=f(x).

T1. Всякая непрерывная функция имеет бесчисленное множество первообразных, причем любые две из них отличаются друг от друга только постоянным слагаемым. Док-во: F(x) и Ф(х) – две первообразные от f(x), тождественно не равные между собой. Имеем F¢(x)=f(x), Ф¢(х)=f(x). Вычитая одно равенство из другого, получим [F(x)–Ф(х)]¢=0. Но если производная от некоторой функции (в нашем случае от F(x)–Ф(х)) тождественно равна нулю, то сама функция есть постоянная; ÞF(x)–Ф(х)=С.

*2. Неопределенным интегралом от данной функции f(x) называется множество всех его первообразных ,где F¢(x)=f(x).

5.

Свойства неопределенного интеграла:

  1. Производная НИ =подынтегральной функции; дифференциал от НИ равен подынтегральному выражению: ; . Док-во: ;
  2. НИ от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого: . Док-во: Обозначим . На основании первого св-ва: , откуда , т.е. .
  3. НИ от суммы конечного числа функций равен сумме интегралов от слагаемых функций: , где u, v, …,w-функции независимой переменной х. Док-во:
  4. Постоянный множитель можно выносить за знак НИ:, где с – константа. Док-во .

Т2. (об инвариантности формул интегрирования): Пусть òf(x)dx=F(x)+C – какая-либо известная формула интегрирования и u=ф(х) – любая функция, имеющая непрерывную производную. Тогда òf(u)du=F(u)+C. Док-во: Из того, что òf(x)dx=F(x)+C, следует F¢(x)=f(x). Возьмем функцию F(u)=F[ф(x)]; для её дифференциала, в силу теоремы об инвариантности вида первого дифференциала функции, имеем: dF(u)=F¢(u)du=f(u)du. Отсюда òf(u)du=òdF(u)=f(u)+C.

6.

Метод замены переменных.

1) Подведение под знак дифференциала. Т1. Пусть функция y=f(x) определена и дифференцируема, пусть также существует f(x)=f(j(t)) тогда если функция f(x) имеет первообразную то справедлива формула: –формула замены переменных. Док-во: пусть F(x) для функции f(x), т.е. F¢(x)=f(x). Найдем первообразную для f(j(t)), [F(j(t))]¢t =F¢(x)(j(t)) j¢(t)=F¢(x) j¢(t)=f(x) j¢(t). òf(x) j¢(t)dt=f(j(t))+C. F(j(t))+C=[F(x)+C]|x = j ( t ) =òf(x)dx|x = j ( t ) .

Замечание1. При интегрировании иногда целесообразно подбирать подстановку не в виде x=j(t), а в виде t=j(x).

2) Подведение под знак дифференциала. F(x)dx=g(j(x)) j¢(x)dx=g(u)du. òf(x)dx=òg(j(x)) j¢(x)dx=òg(u)du.

  1. dx=d(x+b), где b=const;
  2. dx=1/ad(ax), a¹0;
  3. dx=1/ad(ax+b), a¹0;
  4. ф¢(х)dx=dф(x);
  5. xdx=1/2 d(x2 +b);
  6. sinxdx=d(-cosx);
  7. cosxdx=d(sinx);

Интегрирование по частям: òudv=uv-òvdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Þudv=d(uv)-vduÞ(интегрируем) òudv=òd(uv)-òvdu или òudv=uv-òvdu.

7.

Интегрирование по частям: òudv=uv-òvdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Þudv=d(uv)-vduÞ(интегрируем) òudv=òd(uv)-òvdu или òudv=uv-òvdu.

Интегрирование функций, содержащих квадратный трехчлен:

Первый интеграл табличного вида: òdu/uk :

Второй интеграл сводится к нахождению интеграла: где u=x+p/2, a=, q-p2 /4>0

– рекуррентная формула.

Интегрирование рациональных функций: R(x)=P(x)/Q(x), R(x)-рациональная функция, P(x) и Q(x)-многочлены. Дробь P(x)/Q(x) можно разложить в сумму простейших дробей, где Ai , Bi , Ci – постоянные, а именно: каждому множителю (x-a)k в представлении знаменателя Q(x) соответствует в разложении дроби P(x)/Q(x) на слагаемые сумма k простейших дробей типа а каждому множителю (x2 +px+q)t соответствует сумма t простейших дробей типа . Таким образом при разложении знаменателя Q(x) на множители имеет место разложение дроби P(x)/Q(x) на слагаемые.

Правила интегрирования рациональных дробей:

  1. Если рац. дробь неправильная, то её представляют в виде суммы многочлена и неправильной дроби.
  2. Разлагают знаменатель правильной дроби на множетели.

Правую рац. дробь разлагают на сумму простейших дробей. Этим самым интегрирование правильной рац. дроби сводят к интегрированию простейших дробей.

8.

Интегрирование тригонометрических функций:

I. 1 Интеграл вида:

2 R(sinx, cosx) – нечетная функция относительно sinx, то cosx=t.

3 R(sinx, cosx) – нечетная функция относительно cosx, то sinx=t.

4 R(sinx, cosx) – нечетная функция относительно sinx и cosx, то tgx=t.

II. 1

2 Оба показателя степени m и n – четные положительные числа: sinxcosx=1/2 sin2x; sin2 x=1/2(1-cos2x); cos2 x=1/2(1+cos2x).

III. òtgm xdx и òctgm xdx, где m-целое положительное число. tg2 x=sec2 x-1 или ctg2 x=cosec2 x –1.

IV. òtgm xsecn xdx и òctgm xcosecn xdx, где n – четное положительное число. sec2 x=1+tg2 x или cosec2 x=1+ctg2 x.

V. òsinmx*cosnxdx, òcosmx*cosnxdx, òsinmx*sinnxdx; sinacosb=1/2(sin(a+b)+sin(a-b)); cosacosb=1/2(cos(a+b)+cos(a-b)); sinasinb=1/2(cos(a-b)-cos(a+b));

9.

Интегрирование иррациональных функций:

I. 1 òR(x, , ,…)dx, k-общий знаменатель дробей m/n, r/s…. x=tk , dx=ktk–1 dt

2 òR(x,, …)dx, , x=, dx=

II. 1 Вынести 1/Öa или 1/Ö-a. И выделим полные квадраты.

2

3 Разбить на два интеграла.

4

III. 1

2

3

1)p-целое число x=tS , где s- наименьшее общее кратное знаменателей у дробей m и n. 2) (m+1)/n –целое число: a+bxn =tS ; 3) p+(m+1)/n-целое число: a- n +b=tS и где s- знаменатель дроби p.

10.

Определенный интеграл:

1) интервал [a,b], в котором задана функция f(x), разбивается на n частичных интервалов при помощи точек a=x0 <x1 <…<xn –1 <xn =b;

2) Значение функции f(xI ) в какой нибудь точке xi Î[xi –xi –1 ] умножается на длину этого интервала xi –xi –1 , т.е. составляется произведение f(xi )(xi –xi –1 );

3) , где xi –xi –1 =Dxi ;

I=– этот предел (если он существует) называется определенным интегралом, или интегралом от функции f(x) на интервале [a,b], обозначается

*1. Определенным интегралом называется предел интегральной суммы при стремлении к нулю длинны наибольшего частичного интеграла (в предположении, что предел существует).

Т1. (Необходимое условие существования интеграла): Если ОИ существует, т.е. функция f(x) интегрируема не [a,b], то f(x) ограничена на этом отрезке. Но этого не достаточно. Док-во: Функция Дирихле:

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:22:51 02 ноября 2021
.
.01:22:50 02 ноября 2021
.
.01:22:49 02 ноября 2021
.
.01:22:49 02 ноября 2021
.
.01:22:48 02 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Реферат: Математика. Интегралы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287784)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте