Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Курсовая работа

Название: Курсовая работа
Раздел: Рефераты по статистике
Тип: реферат Добавлен 20:53:32 19 августа 2005 Похожие работы
Просмотров: 908 Комментариев: 17 Оценило: 6 человек Средний балл: 4 Оценка: 4     Скачать

Лабораторная работа № 1.

Тема: «Сводка, группировка, статистические таблицы».

Цель : выявление обобщающих закономерностей, характерных для изучаемой совокупности объектов наблюдения как целостной системы.

Цель исследования—определение уровня успеваемости студентов 1-ого курса, а так же факторов на него влияющих.

В качестве исследуемых признаков я рассматриваю:

1. средний балл по итогам экзаменов за 1-ый курс (баллы).

2. посещаемость занятий в университете на 1-ом курсе.

3. самообразование (дополнительное обучение, курсы) (ч/нед).

4. сон (ч/сутки).

5. пол (м, ж).

6. подготовка к семинарским и практическим занятиям (ч/нед).

7. нравятся ли студенту на 1-ом курсе занятия в университете (да, нет).

Из представленных признаков я выделяю признак-результат—средний балл зачётки по итогам 1-ого курса, так как его значение отвечает цели исследования. Остальные шесть признаков являются признаками-факторами, т. к. они оказывают влияние на признак-результат.

Наблюдение единовременное ауд. 722, 522 СПбГИЭУ. Дата проведения: 03.11.2000г. по форме проведения—опрос. Объектом наблюдения являются 2 группы студентов (1093 и 1094) 2-ого курса. единица наблюдения—студент. Исследование основного массива.


Таблицы с исходными данными.

Таблица 1

Средний балл за­чётки по итогам экзаменов за 1-ый курс (баллы)

Посещаемость занятий на первом курсе

Самообразование (доп. Курсы) ч/нед

Подготовка к семинар­ским заня­тиям (ч/нед)

Сон (ч/сут)

Пол (м, ж)

Нравятся ли занятия в университете (да, нет)

4,7

19,5

0

5

7

Ж

Да

4,5

22

2

6

9

Ж

Да

4,2

22

0

2

6

М

Да

4,3

19,5

0

7

7

Ж

Да

4,5

17,5

0

3

7

Ж

Нет

4,2

9,5

6

12

10

Ж

Да

4,0

12,5

0

5

5

Ж

Да

4,7

22

4

7

6

Ж

Да

4,6

17,5

3

4

8

Ж

Да

4,7

9,5

0

2

7

Ж

Да

4,5

11,5

6

3

7

Ж

Да

4,0

11,5

2

3

9

Ж

Да

4,2

19,5

4

8

8

Ж

Нет

4,0

20,5

6

9

5

Ж

Да

3,2

9,5

0

0

10

М

Нет

4,0

17,5

0

8

8

М

Нет

3,2

14,5

0

2

8

М

Нет

3,5

14,5

0

2

8

М

Нет

4,8

22

0

10

10

Ж

Нет

4,6

8,5

0

1

8

М

Да

4,5

22

0

4

7

Ж

Да

4,5

22

6

2

7

М

Да

4,2

17,5

4

4

9

М

Нет

4,5

14,5

6

4

10

Ж

Да

4,2

11,5

2

2

8

Ж

Нет

4,8

17,5

0

4

9

Ж

Нет

4,0

10,5

0

2

7

Ж

Да

4,2

17,5

2

6

5

Ж

Да

3,0

9,5

0

0

9

М

Нет

4,8

19,5

2

2

8

Ж

Да

4,8

19,5

2

6

9

Ж

Да

4,3

17,5

4

2

7

Ж

Да

3,2

6,0

0

0

5

М

Нет

4,5

22

2

5

9

Ж

Нет

4,7

22

4

3

6

Ж

Да

4,2

22

3

5

8

Ж

Да

4,6

9,5

0

1

8

Ж

Нет

3,0

14,0

0

2

10

М

Нет

3,0

6,5

0

5

9

М

Нет

4,0

22

2

5

9

Ж

Да

4,7

17,5

6

0

10

Ж

Нет

3,5

11,5

0

6

7

М

Нет

4,7

22

6

2

5

Ж

Да

4,5

22

0

0

8

Ж

Да

3,2

17,5

4

8

9

Ж

Да

4,8

22

0

0

5

М

Да

3,2

9,5

0

5

10

М

Да

4,5

17,5

0

3

10

Ж

Да

3,0

14,5

5

3

7

М

Нет

4,7

11,5

5

3

7

М

Нет


Структурные группировки.

1 группировка.

Таблица 2

Средний балл по итогам экзаменов за 1 курс, баллы

Число студентов

% к итогу

Fi

[3-3,5]

9

18

9

[3,5-4]

3

6

12

[4-4,5]

15

30

27

[4,5-5]

23

46

50

Итог:

50

100

Для удобства разбиваем вариационный ряд на 4 равных интервала. Величину интервала определяем по формуле:

h = R / n = (X max – X min) / n = (5-3) / 4 = 0,5

гистограмма: кумулята:


считаем по несгруппированным данным для большей точности:

Х = (4,7 + 4,5 + 4,2 + 4,2 +4,5 + 4,2 + 4,0 + 4,7 + 4,6 + 4,7 + 3,5 + 4,0 + 3,2 + 4,0 + 3,2 + 3,5 + + 4,8 + 4,6 + 4,5 + 4,5 + 4,2 + 4,5 + 4,2 + 4,8 + 4,0 + 4,2 + 3,0 + 3,2 + 4,8 + 4,8 + 4,3 + 4,5 + 4,7 + 4,2 + 4,6 + 3,0 + 3,0 + 4,0 + 4,7 + 3,5 + 4,7 + 4,5 + 3,2 + 4,5 + 4,8 + 3,2 + 3,0 + 4,5 + 4,7) / 50 = 4,27 (балла)

Ме = x0 + D Ме (N/2 – F(x0 ) / NMe

Me = 4+ 0,5 (25 –12) / 15 = 4,4 (балла)

Мо = х0 + D Мо (NМо – NМо-1 ) / (NМо – NМо-1 ) + (NМо – NМо+1 )

Mo = 4,5 + 0,5 (25-15) / ((23-15) + (23-0)) = 4,6 (балла)

D = å (xi – x)2 / n считаем по несгруппированным данным.

D = 0,3 (кв. балла)

bx = ÖD

bx = Ö0,3 = 0,55 (балла)

V = bx / x × 100%

V = (0,55 / 4,27) × 100% = 128%

R = xmax – xmin

R = 5 – 3 = 2 (балла)

Вывод: средний балл зачётки по итогам экзаменов за 1-ый курс для данной совокупности составляет 4,27 балла. Т. к. коэффициент вариации является величиной незначительной (128%), можно предполагать, что такой средний балл является типичным для данной совокупности. Наиболее распространённым является балл зачётки 4,6 балла. Средний балл у 50% студентов не больше 4,4 балла.


Группировка 2

Таблица 3

Посещаемость, ч/нед

Число студентов, чел

% к итогу

Fi

[6-10]

9

18

9

[10-14]

8

16

17

[14-18]

15

30

32

[18-22]

18

36

50

Итог:

50

100

Разбиение на интервалы аналогично группировке 1.

Для несгруппированных данных, значит более точный результат.

Х = å xi / n

X = 16, 13 (ч/нед)

Ме = x0 + D Ме (N/2 – F(x0 ) / NMe

Ме = 14 + 4 (25 – 17) / 15 = 17,3 (ч/нед)

D = å (xi – x)2 / n

D = 19,4 ((ч/нед)2 )

bx = ÖD = 4,4 (ч/нед)

V = bx / x × 100% = (4,4 / 16,13) × 100% = 27,2%

R = xmax – xmin

R = 22 – 16 = 16 (балла)

Вывод: средняя посещаемость в группах составляет 16,13 ч/нед (70% от часов в неделю назначенных расписанием). Коэффициент вариации является величиной незначительной (28,6%), следовательно. Такая средняя посещаемость типична для студентов данной совокупности. Большинство студентов посещало 17,3 ч/нед. Посещаемость занятий у 50% студентов меньше 19 ч/нед, у 50% больше 19 ч/нед.


Группировка 3

Таблица 4

Самообразование, курсы (ч/нед)

Число студентов

% к итогу

Fi

0

25

50

25

2

8

16

33

3

2

4

35

4

6

12

41

5

2

4

43

6

7

14

50

Итог:

50

100

Полегон частот: кумулята


Х = å xi ji / å ji = (0 × 25 + 2 × 8 + 3 × 2 + 4 × 6 + 5 × 2 + 6 × 7) / 50 = 1,96 (ч/нед)

NMe = (n+1) / 2 = 51 / 2 = 25,5

Me = x NMe ; Me = 2 (ч/нед) ; Мо = 0 (ч/нед)

D = å (xi – x)2 ji / å jI = ((0 – 1,96)2 × 25 + (2 – 1,96)2 × 8 + (3 – 1,96)2 × 2 + (4 – 1,96)2 × 6 + (5 – 1,96)2 × 2 + (6 – 1,96)2 × 7) / 50 = 5,1 (ч/нед)2

bx = 2,26 (ч/нед)

V = (2,26 / 1,96) × 100% = 115%

R = 6 – 0 = 6 (ч/нед)

Вывод: среднее количество часов, затраченное студентами на самообразование 1,96 ч/нед. Т. к. коэффициент вариации является величиной значительной (115%), то среднее количество является не типичным для данной совокупности. Наиболее распространённым является количество часов самообразования равное 0 ч/нед. Ровно половина из 50 опрошенных студентов не занимались на первом курсе дополнительным самообразованием.


Группировка 4

Таблица 5

Подготовка к семинарам, ч/нед

Число студентов

% к итогу

Fi

[0-3]

21

42

21

[3-6]

18

36

39

[6-9]

8

16

47

[9-12]

3

6

50

Для удобства разбиваем вариационный ряд на 4 равных интервала. Величину интервала определяем по формуле: h = R / n. h = 3.

Х = å xi / n

Х = 4,08 (ч/нед)

Ме = 3 + 3 (25 – 21) / 18 = 3,6 (ч/нед)

Мо = 0 + 3 (21 – 0) / ((21 – 0) + (21 – 8)) = 1,85 (ч/нед)

D = å (xi – x)2 / n

D = 7,2 ((ч/нед)2 )

bx = 2,7 (ч/нед)

V = (2,7 / 4,08) × 100% = 65,6%

R = 12 – 0 = 12 (ч/нед)

Вывод: среднее время, затраченное на подготовку к семинарским занятиям у студентов на 1 курсе 4,08 ч/нед. Т. к. коэффициент вариации является величиной значительной, то среднее время подготовки является величиной не типичной для данной совокупности студентов. Наиболее распространённым количеством часов на подготовку равно 1,85 ч/нед. Число студентов, занимающихся больше 3,6 ч/нед равно числу студентов, занимающихся подготовкой к занятиям больше 3,6 ч/нед.

Группировка 5

Таблица 6

Сон, ч/сутки

Число студентов

% к итогу

Fi

5

6

12

6

6

3

6

9

7

13

26

22

8

11

22

33

9

8

16

41

10

9

18

50

Итог:

50

100


X = (5 6 + 6 3 + 7 13 + 8 11 + 9 8 + 10 9) / 50 = 7,78 (ч/сут)

NMe = (n+1) / 2 Me = 8 (ч/сут)

Мо = 7 (ч/сут)

D = å (xi – x)2 ji / å jI

D = 2,4 ((ч/сут)2 )

bx = 1,55 (ч/сут)

V = (1,55 / 7,78) × 100% = 19,9%

R = 10 – 5 = 5 (ч/сут)

Вывод: среднее значение часов сна 7,78 ч/сутки. Т. к. коэффициент вариации является величиной незначительной (19,9%), то такое среднее значение часов сна является типичным для данной совокупности. Наиболее распространённым является количество часов сна 7 ч/сутки. Количество студентов, которые спят больше 8 ч/сутки равно количеству студентов, спящих меньше 8 ч/сут.


Группировка 6

Таблица 7

пол

Число студентов, чел

% к итогу

Fi

Ж

33

66

30

М

17

34

50

Итог:

50

100


Вывод: из таблицы видно, что большинство опрошенных студентов женского пола.


Группировка 7

Таблица 8

Нравятся ли занятия на 1 курсе

Число студентов, чел

% к итогу

Fi

Да

30

60

30

Нет

20

40

50

Итог:

50

100

Вывод: из таблицы видно, что большинству студентов данной совокупности нравились занятия на 1 курсе в академии.


Комбинационные группировки.

Таблица 9

сон

Средний балл зачётки

Всего

3

3,2

3,5

4

4,2

4,3

4,5

4,6

4,7

4,8

5

0

1

0

2

0

0

0

1

1

1

6

6

0

0

0

0

1

0

0

0

2

0

3

7

1

0

2

1

1

2

2

0

3

1

13

8

0

1

1

1

3

0

2

0

0

1

11

9

1

1

0

2

1

0

2

0

0

1

8

10

2

2

0

0

1

0

2

0

1

1

9

Итог:

4

5

3

6

7

2

8

3

7

5

50

Вывод: из таблицы видно, что наиболее крупные элементы расположены близко к побочной диагонали. Следовательно, зависимость между признаками близка к обратной.

Таблица 10

Посещаемость

Средний балл зачётки

Всего

3

3,2

3,5

4

4,2

4,3

4,5

4,6

4,7

4,8

[6-10]

2

3

0

0

1

0

0

2

1

0

9

[10-14]

0

0

2

3

1

0

0

0

1

0

7

[14-18]

2

2

1

1

2

1

3

1

1

1

15

[18-22]

0

0

0

2

3

1

5

0

4

4

19

Итог:

4

5

3

6

7

2

8

3

7

5

50

Вывод: из таблицы видно, что наибольшие элементы расположены близко к главной диагонали. Следовательно, зависимость между признаками близка к прямой.


Аналитические группировки.

Группировка 1

Таблица 11

Введём обозначения:

1. неудовлетворительная подготовка к занятиям [0-3]

2. удовлетворительная [3-6]

3. хорошая [6-9]

4. отличная [9-12]

Подготовка к занятиям

Число студентов, чел

Средний балл зачётки за 1 курс

Неудовлетворительная

21

3,7

Удовлетворительная

18

4,3

Хорошая

8

4,4

Отличная

3

4,5

Всего:

50

Вывод: из таблицы видно, что зависимость между фактором и признаком существует.

Группировка 2

Таблица 12

Введём обозначения:

1. 1/3 всех занятий [6-12] ч/нед

2. половина [12-18] ч/нед

3. все занятия [18-22] ч/нед

Посещаемость занятий

Число студентов, чел

Средний балл зачётки за 1 курс

1/3 всех занятий

13

3,3

половина

19

4,0

все занятия

18

4,5

Всего:

50

Вывод: из таблицы видно, что зависимости между признаком-фактором и признаком-результатом явной нет.


Группировка 3

Таблица 13

Самообразование

Число студентов, чел

Средний балл зачётки за 1 курс

Посещали доп. курсы

25

4,2

Не посещали доп. курсы

25

4,0

Вывод: не наблюдается явной зависимости между признаком-фактором и признаком результатом.


Лабораторная работа № 2

Тема : Корреляционный анализ, множественная линейная регрессия.

Цель: выбор оптимальной модели многофакторной регрессии на основе анализа различных моделей и расчитан для них коэффициентов множественной детерминации и среднеквадратических ошибок уравнения многофакторной регрессии.

Корреляционная матрица

Таблица 1

0

1

2

3

4

0

1

0,572

0,115

0,486

0,200

1

0,572

1

0,218

0,471

-0,112

2

0,115

0,218

1

0,452

-0,048

3

0,438

0,471

0,452

1

-0,073

4

-0,2

-0,112

-0,048

-0,073

1

Где х0 – средний балл зачётки (результат), х1 – посещаемость занятий, х2 – самообразование (доп. курсы), х3 – подготовка к семинарским занятиям, х4 – сон.

Введём обозначения признаков-факторов: 1 – посещаемость занятий на 1 курсе (ч/нед); 2 – самообразование (ч/нед); 3 – подготовка к семинарским и практическим занятиям (ч/нед); 4 – сон (ч/сут); 0 – средний балл зачётки по итогам экзаменов за 1 курс.

Расчётная таблица для моделей многофакторной регрессии.

Таблица 2

Модель многофакторной регрессии

R2

E2

1-2-3-4

0,39

0,45

1-2-3

0,37

0,46

2-3-4

0,23

0,51

1-3-4

0,38

0,45

1-2

0,33

0,47

1-3

0,36

0,46

1-4

0,35

0,47

2-3

0,20

0,52

2-4

0,05

0,56

3-4

0,22

0,51

По трём критериям выбираем оптимальную модель.

1. число факторов минимально (2)

2. max R, R = 0,36

3. min E, E = 0,46

Следовательно, оптимальной моделью является модель 1-3. Значит, признаки-факторы «посещаемость занятий на 1 курсе» и «подготовка к семинарским занятиям» влияют значительнее других факторов на признак-результат.

Среднеквадратическая ошибка уравнения многофакторной регрессии небольшая по сравнению с ошибками, рассчитанными для других моделей многофакторной регрессии.

Составляю для этой модели уравнение регрессии в естественных масштабах.

Х0/1,3 = a + b1 x1 + b3 x3

Корреляционная матрица.

Таблица 3

0

1

3

0

1,00

0,57

0,48

1

0,57

1,00

0,47

3

0,43

0,47

1,00

t0/1,3 = b1 t1 + b3 t3

0,57 = b1 + 0,47b3 0,57 = b1 + 0,47(0,44 – 0,47b1 ) b1 = 0,4

0,44 = 0,47b1 + b3 b3 = 0,44 – 0,47b1 b3 = 0,25

t0/1,3 = 0,4t1 + 0,25t3

b1 = (d0 / dx1 ) b1 = (0,47 / 4,4) 0,4 = 0,071

b3 = (d0 / dx3 ) b3 = (0,79 / 2,68) 0,25 = 0,073

a = x0 – b1 x1 – b3 x3 = 4,27 – 0,071 × 16,13 – 0,073 × 4,08 = 2,8

имеем: х0/1,3 =2,8 + 0,071х1 + 0,073х3 – уравнение линейной множественной регрессии.

R0/1,3 = Öb1 r01 + b3 r03

R0/1,3 = Ö0,4 × 0,58 + 0,25 × 0,48 = 0,6

Вывод: коэффициент b1 говорит о том, что признак-результат—средний балл зачётки за 1 курс на 0,4 долю от своего среднеквадратического отклонения (0,4 × 0,79 = 0,316 балла) при изменении признака-фактора—посещаемости на 1 курсе на одно своё СКО (4,4 ч/нед).

b3 – средний балл зачётки изменится на 0,25 долю от своего СКО (0,25 0,79 = 0,179 балла) при увеличении признака-фактора—подготовки к семинарским занятиям на одно своё СКО (2,68 ч/сут).

Т. к. b1 < b3 , следовательно фактор 1—посещаемость занятий влияет на средний балл зачётки больше, чем фактор 3—подготовка к занятиям.

R2 говорит о том, что 36% общей вариации значений среднего балла зачётки на 1 курсе вызвано влиянием посещаемости и подготовки к занятиям. Остальные 60% вызваны прочими факторами.

R = 0,58 свидетельствует о том, что между посещаемостью занятий и подготовкой к ним и средним баллом зачётки существует заметная линейная зависимость.

Коэффициент b1 говорит о том, что если посещаемость занятий увеличится на 1 ч/нед, то средний балл зачётки увеличится в среднем на 0,071 балла, при условии неизменности всех остальных факторов. b2 говорит о том, что если подготовка к занятиям увеличится на 1 ч/нед, то средний балл зачётки в среднем увеличится на 0,073 балла.


b1 = 0,4 b3 = 0,25

r01 = 0,52

r03 = 0,44


r13 = 0,47

Граф связи признаков-факторов: х2 – подготовки к семинарским занятиям, ч/нед; х1 - посещаемости занятий, ч/нед с признаком-результатом х0 – средним баллом зачётки по итогам экзаменов за 1 курс.

b1 – мера непосредственного влияния на признак-результат посещаемости занятий.

b3 – мера непосредственного влияния подготовки к занятиям на средний балл зачётки.

r01 = b1 + r13 b3 , где r01 – общее влияние х1 на r13 b3 – мера опосредованного влияния х1 через х3 на х0.

r01 = 0,4 + 0,47 × 0,25 = 0,52

r03 = b3 + r31 b1 , где r03 – общее влияние х3 на r31 b1 – мера опосредованного влияния х3 через х1 на х0.

Лабораторная работа № 3.

Тема: «Дисперсионное отношение. Эмпирическая и аналитическая регрессии.»

Цель: выявление зависимости между признаками-факторами и признаком-результатом.

Таблица с исходными данными.

Таблица 1

Средний балл за­чётки по итогам экзаменов за 1-ый курс (баллы)

Посещаемость занятий на первом курсе (ч/нед)

Самообразование (доп. Курсы) (ч/нед)

Подготовка к семинар­ским заня­тиям (ч/нед)

4,7

19,5

0

5

4,5

22

2

6

4,2

22

0

2

4,3

19,5

0

7

4,5

17,5

0

3

4,2

9,5

6

12

4,0

12,5

0

5

4,7

22

4

7

4,6

17,5

3

4

4,7

9,5

0

2

4,5

11,5

6

3

4,0

11,5

2

3

4,2

19,5

4

8

4,0

20,5

6

9

3,2

9,5

0

0

4,0

17,5

0

8

3,2

14,5

0

2

3,5

14,5

0

2

4,8

22

0

10

4,6

8,5

0

1

4,5

22

0

4

4,5

22

6

2

4,2

17,5

4

4

4,5

14,5

6

4

4,2

11,5

2

2

4,8

17,5

0

4

4,0

10,5

0

2

4,2

17,5

2

6

3,0

9,5

0

0

4,8

19,5

2

2

4,8

19,5

2

6

4,3

17,5

4

2

3,2

6,0

0

0

4,5

22

2

5

4,7

22

4

3

4,2

22

3

5

4,6

9,5

0

1

3,0

14,0

0

2

3,0

6,5

0

5

4,0

22

2

5

4,7

17,5

6

0

3,5

11,5

0

6

4,7

22

6

2

4,5

22

0

0

3,2

17,5

4

8

4,8

22

0

0

3,2

9,5

0

5

4,5

17,5

0

3

3,0

14,5

5

3

4,7

11,5

5

3


Рассматриваю первую пару признаков: признак-фактор—посещаемость занятий на 1 курсе (ч/нед) и признак-результат—средний балл зачётки по итогам экзаменов за 1 курс (баллы). Далее обосную взаимосвязь между ними.

Расчётная таблица №1

Таблица 2

Посещаемость занятий (ч/нед)

Число наблюдений

xi

yi

dyi

d2 yi

d2 yi ji

yi - y

(yi –y)2 jI

[6-10]

9

8,6

3,7

0,71

0,5

4,5

-0,5

2,25

[10-14]

8

11,5

4,1

0,38

0,14

1,12

-0,1

0,08

[14-18]

15

16,4

3,7

1,01

1,02

15,3

-0,5

3,75

[18-22]

18

19,6

4,4

0,31

0,09

1,62

0,4

2,88

Сумма

50

-

-

-

-

22,54

-

8,96

Средняя

-

15,3

4,0

-

-

5,6

-

2,24

d2 y = (å(yi –y)2 jI )

d 2 y = 8,96 / 50 = 0,1792 (балла)2

E2 y= (åб2 yi jI ) / åjI

E2 y = (4,5 + 1,12 + 15,3 + 1,62) / 50 = 0,4508(балла)2

б2 y = E2 y + d 2 y = 0,4508 + 0,1792 = 0,63 (балла)2

r2 = d 2 y / б2 y = 0,1792 / 0,63 = 0,28 (0,28%)

построение аналитической регрессии.

yx = a + bx

xy = (åxyjI ) / åjI = 62,52

б2 x = 19,4 (ч/нед)2

b = (xy – x y) / б2 x = (62,52 – 15,3 × 4,0) / 19,4 = 0,068

a = y – bx = 4,0 – 0,068 × 15,3 = 2,96

Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от посещаемости: строим по двум точкам

yx = 2,96 + 0,068х

  1. yx = 2,96 + 0,068 × 6 = 3,358
  2. yx = 2,96 + 0,068 × 22 = 4,446

rxy = (xy – x y) / бx бy = 0,37


Корреляционное поле

Эмпирическая линия регрессии

Аналитическая линия регрессии

Распределение среднего балла зачётки за 1 курс по признаку-фактору—посещаемости занятий на 1 курсе.

Вывод: r2 свидетельствует о том, что 28% общей вариации результативного признака вызвано влиянием признака фактора—посещаемостью. Остальные 72% - вызваны влиянием прочих факторов. Можно сказать, что это слабая корреляционная зависимость. Интерпретируя параметр b, предполагаем, что для данной совокупности студентов с увеличением посещаемости занятий на 1 курсе на 1 ч/нед средний балл зачётки увеличивается на 0,068 балла. rxy говорит о том, что между признаком-результатом и признаком-фактором заметная линейная связь.


Рассматриваю вторую пару признаков:

Расчётная таблица № 2.

Таблица 3

Подготовка к семинарским занятиям (ч/нед)

Число наблюдений

xi

yi

dyi

d2 yi

d2 yi ji

yi - y

(yi –y)2 ji

[0-3]

20

1,2

3,78

0,63

0,39

7,8

-0,22

0,96

[3-6]

18

4,0

4,31

0,45

0,2

3,6

0,31

1,72

[6-9]

9

6,8

4,46

0,28

0,07

0,63

0,46

1,9

[9-12]

2

9,5

4,4

0,399

0,15

0,3

0,4

0,32

Сумма

50

-

-

-

-

2,33

-

4,9

средняя

-

3,5

4,0

-

-

3,08

-

1,2

d2 y = (å(yi –y)2 jI )

d 2 y = 4,9 / 50 = 0,098 (балла)2

E2 y= (åб2 yi jI ) / åjI

E2 y = 12,33 / 50 = 0,25 (балла)2

б2 y = E2 y + d 2 y = 0,35 (балла)2

r2 = d 2 y / б2 y = 0,098 / 0,35 = 0,28 (0,28%)

r = 0,53

построение аналитической регрессии.

yx = a + bx

xy = (åxyjI ) / åjI

xy = 15,2

б2 x = 7,2 (ч/нед)2

b = (xy – x y) / б2 x = (15,2 – 3,5 × 4,0) / 7,2 = 0,16

a = y – bx = 4,0 – 0,16 × 3,4

Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от подготовки к семинарским занятиям:

yx = 2,96 + 0,068х

x = 0 y = 3,4

x = 7 y = 4,5

rxy = (xy – x y) / бx бy = (15,2 – 14) / 2,6 = 0,46


Корреляционное поле

Эмпирическая линия регрессии

Аналитическая линия регрессии

Распределение среднего балла зачётки за 1 курс по признаку-фактору—подготовке к семинарским занятиям.

Вывод: r2 свидетельствует о том, что 28% общей вариации результативного признака вызвано влиянием признака фактора—подготовкой к семинарским занятиям. Остальные 72% - вызваны влиянием прочих факторов. Можно сказать, что это слабая корреляционная зависимость. Интерпретируя параметр b, предполагаем, что для данной совокупности студентов с увеличением подготовки к занятиям на 1 курсе на 1 ч/нед средний балл зачётки увеличивается на 0,16 балла. rxy говорит о том, что между признаком-результатом и признаком-фактором есть умеренная линейная связь.


Рассматриваю третью пару признаков:

Расчётная таблица № 3

Таблица 4

Самообразование (ч/нед)

Число наблюдений

xi

yi

dyi

d2 yi

d2 yi ji

yi - y

(yi –y)2 ji

0

25

0

4,07

0,68

0,46

11,5

-0,03

0,022

2

8

2

4,38

0,3

0,09

0,72

0,28

0,62

3

2

3

4,40

0,2

0,04

0,08

0,3

0,18

4

6

4

4,22

0,5

0,25

1,5

0,12

0,08

5

2

5

3,35

0,35

0,12

0,24

-0,75

1,16

6

7

6

3,3

0,40

0,16

1,12

0,2

0,28

Сумма

50

-

-

-

-

15,88

-

2,34

средняя

-

1,96

4,1

-

-

0,31

-

0,39

d2 y = (å(yi –y)2 jI )

d 2 y = 2,34 / 50 = 0,046 (балла)2

E2 y= (åб2 yi jI ) / åjI

E2 y = 15,88 / 50 = 0,31 (балла)2

б2 y = E2 y + d 2 y = 0,31 + 0,046 = 0,36 (балла)2

r2 = d 2 y / б2 y = 0,046 / 0,36 = 0,13 (13%)

r = 0,36

построение аналитической регрессии.

yx = a + bx

xy = (åxyjI ) / åjI

xy = 8,22

б2 x = 5,1 (ч/нед)2

b = (xy – x y) / б2 x = (8,22 – 8,036) / 5,1 = 0,032

a = y – bx = 4,1 – 0,032 × 1,96 = 4,03

Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от самообразования:

yx = 2,96 + 0,068х

x = 0 y = 3,4

x = 7 y = 4,5

rxy = (xy – x y) / бx бy = (8,2 – 8,036) / 2,25 × 0,6 = 0,12


Корреляционное поле

Эмпирическая линия регрессии

Аналитическая линия регрессии

Вывод: r2 свидетельствует о том, что 13% общей вариации результативного признака вызвано влиянием признака фактора—самообразованием. Можно сказать, что это очень слабая корреляционная связь. Зная коэффициент b, предполагаем, что для данной совокупности студентов с увеличением самообразования на 1 ч/нед средний балл зачётки увеличивается на 0,032 балла. rxy говорит о том, что между признаком-результатом и признаком-фактором есть слабая прямая линейная связь.


Министерство Высшего Образования РФ

Санкт-Петербургский Государственный Инженерно-Экономический Университет

Лабораторные работы

По статистике

Студентки 1 курса

Группы 3292

Специальность коммерция

Харькиной Анны.

Преподаватель: Карпова Г. В.

Оценка:

СПб 2001

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
19:37:22 10 сентября 2021
Если Вам нужна помощь с учебными работами, ну или будет нужна в будущем (курсовая, дипломная, отчет по практике, контрольная, РГР, решение задач, онлайн-помощь на экзамене или "любая другая" учебная работа...) - обращайтесь: https://clck.ru/P8YFs - (просто скопируйте этот адрес и вставьте в браузер) Сделаем все качественно и в самые короткие сроки + бесплатные доработки до самой сдачи/защиты! Предоставим все необходимые гарантии.
Генрих01:07:04 23 июня 2020
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya22:02:13 24 августа 2019
.
.22:02:13 24 августа 2019
.
.22:02:12 24 августа 2019

Смотреть все комментарии (17)
Работы, похожие на Реферат: Курсовая работа

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286388)
Комментарии (4153)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте