МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ
Факультет менеджмента
Кафедра ОП И ВЭД
Реферат
по дисциплине: «Статистика»
на тему :
«Ряды динамики»
Выполнил: студент
группы ВЭД-95-1
Иванов Олег
Проверил: ст. преп.
Дружинина И. В.
Тюмень 1999
|
1. ПОНЯТИЯ И КЛАССИИКАЦИЯ РЯДОВ ДИНАМИКИ
1.1 Понятие о статистических рядах динамики .
Ряды динамики – статистические данные , отображающие развитие во времени изучаемого явления . Их также называют динамическими рядами , временными рядами .
В каждом ряду динамики имеется два основных элемента :
1) показатель времени t ;
2) соответствующие им уровни развития изучаемого явления y;
В качестве показаний времени в рядах динамики выступают либо определенные даты (моменты), либо отдельные периоды (годы , кварталы, месяцы, сутки).
Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления . Они могут выражаться абсолютными , относительными или средними величинами .
Ряды динамики различаются по следующим признакам :
1) По времени . В зависимости от характера изучаемого явления уровни рядов динамики могут относиться или к определенным датам (моментам) времени, или к отдельным периодам . В соответствии с этим ряды динамики подразделяются на моментные и интервальные .
Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени . Примером моментного ряда динамики является следующая информация о списочной численности работников магазина в 1991 году (таб. 1):
Таблица 1[]
Списочная численность работников магазина в 1991 году
Дата
|
1.01.91
|
1.04.91
|
1.07.91
|
1.10.91
|
1.01.92
|
Число работников , чел.
|
192
|
190
|
195
|
198
|
200
|
Особенностью моментного ряда динамики является то , что в его уровни могут входить одни и те же единицы изучаемой совокупности . Хотя и в моментном ряду есть интервалы – промежутки между соседними в ряду датами , -- величина того или иного конкретного уровня не зависит от продолжительности периода между двумя датами . Так , основная часть персонала магазина , составляющая списочную численность на 1.01.1991 , продолжающая работать в течение данного года , отображена в уровнях последующих периодов . Поэтому при суммировании уровней моментного ряда может возникнуть повторный счет .
Посредством моментных рядов динамики в торговле изучаются товарные запасы , состояние кадров , количество оборудования и других показателей , отображающих состояние изучаемых явлений на отдельные даты (моменты) времени .
Интервальные ряды динамики отражают итоги развития (функционирования) изучаемых явлений за отдельные периоды (интервалы) времени .
Примером интервального ряда могут служить данные о розничном товарообороте магазина в 1987 – 1991 гг. (таб. 2):
Таблица 2[]
Объем розничного товарооборота магазина в 1987 - 1991 гг.
Год
|
1987
|
1988
|
1989
|
1990
|
1991
|
Объем розничного товарооборота , тыс. р.
|
885.7
|
932.6
|
980.1
|
1028.7
|
1088.4
|
Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени . При этом единица совокупности , входящая в состав одного уровня , не входит в состав других уровней .
Особенностью интервального ряда динамики является то , что каждый его уровень складывается из данных за более короткие интервалы (субпериоды) времени . Например , суммируя товарооборот за первые три месяца года , получают его объем за I квартал , а суммируя товарооборот за четыре квартала , получают его величину за год , и т. д. При прочих равных условиях уровень интервального ряда тем больше , чем больше длина интервала , к которому этот уровень относится .
Свойство суммирования уровней за последовательные интервалы времени позволяет получить ряды динамики более укрупненных периодов .
Посредством интервальных рядов динамики в торговле изучают изменения во времени поступления и реализации товаров , суммы издержек обращения и других показателей , отображающих итоги функционирования изучаемого явления за отдельные периоды .
Статистическое отображение изучаемого явления во времени может быть представлено рядами динамики с нарастающими итогами. Их применение обусловлено потребностями отображения результатов развития изучаемых показателей не только за данный отчетный период , но и с учетом предшествующих периодов . При составлении таких рядов производится последовательное суммирование смежных уровней . Этим достигается суммарное обобщение результата развития изучаемого показателя с начала отчетного периода (года , месяца , квартала и т. д.) .
Ряды динамики с нарастающими итогами строятся при определении общего объема товарооборота в розничной торговле . Так , обобщением товарно – денежных отчетов за последние операционные периоды (пятидневки , недели , декады и т. д.) .
2) По форме представления уровней . Могут быть построены также ряды динамики , уровни которых представляют собой относительные и средние величины . Они также могут быть либо моментными либо интервальными .
В интервальных рядах динамики относительных и средних величин непосредственное суммирование уровней само по себе лишено смысла , так как относительные и средние величины являются производными и исчисляются через деление других величин .
3) По расстоянию между датами или интервалам времени выделяют полные или неполные ряды динамики .
Полные ряды динамики имеют место тогда , когда даты регистрации или окончания периодов следуют друг за другом с равными интервалами . Это равноотстоящие ряды динамики . Неполные – когда принцип равных интервалов не соблюдается .
4) По числу показателей можно выделить изолированные и комплексные (многомерные) ряды динамики . Если ведется анализ во времени одного показателя , имеем изолированный ряд динамики . Комплексный ряд динамики получается в том случае , когда в хронологической последовательности дается система показателей , связанных между собой единством процесса или явления .
1.2 Требования , предъявляемые к рядам динамики
1) Сопоставимость статистических данных
Основным условием для получения правильных выводов при анализе рядов динамики является сопоставимость его элементов .
Ряды динамики формируются в результате сводки и группировки материалов статистического наблюдения . Повторяющиеся во времени ( по отчетным периодам) значения одноименных показателей в ходе статистической сводки систематизируются в хронологической последовательности .
При этом каждый ряд динамики охватывает отдельные обособленные периоды , в которых могут происходить изменения , приводящие к несопоставимости отчетных данных с данными других периодов . Поэтому для анализа ряда динамики необходимо приведение всех составляющих его элементов к сопоставимому виду . Для этого в соответствии с задачами исследования устанавливаются причины , обусловившие несопоставимость анализируемой информации , и применяется соответствующая обработка , позволяющая производить сравнение уровней ряда динамики .
Несопоставимость в рядах динамики вызывается различными причинами . Это могут быть разновеликость показаний времени, неоднородность состава изучаемых совокупностей во времени , изменения в методике первичного учета и обобщения исходной информации , различия применяемых в различное время единиц измерения и т. д.
Так , при изучении динамики товарооборота по внутригодовым периодам несопоставимость возникает при неодинаковой продолжительности показаний времени (месяцев , кварталов , полугодий)
При отсутствии информации о фактическом времени работы для получения сопоставимых среднесуточных показателей используется режимное время работы . Последнее различно в зависимости от выполняемых торговлей функций и обслуживаемого контингента .
Для розничной торговли возможны следующие варианты режимного времени :
a) Предприятия , работающие без перерыва в праздничные и выходные дни (например , дежурные продуктовые и хлебобулочные магазины , рестораны , кафе) . Их фонд рабочего времени соответствует календарному ;
b) Предприятия , не работающие в праздничные дни ( например , городские рынки) . Их фонд рабочего времени меньше календарного на число ежегодных праздничных дней ;
c) Предприятия , не работающие в праздничные и общевыходные дни (например, городские промтоварные магазины , предприятия общественного питания на фабриках , в учреждениях и т. д.) . Величина их рабочего времени зависит от размещения в каждом календарном году праздничных и выходных дней ;
d) Предприятия , работающие в отдельные периоды времени , сезоны года (например , городские овощные базары , торговля в местах массового летнего отдыха и т. д.) .
2) Величины временных интервалов должны соответствовать интенсивности изучаемых процессов . Чем больше вариация уровней во времени , тем чаще следует делать замеры . Соответственно для стабильных процессов интервалы можно увеличить .
Так , переписи населения достаточно проводить один раз в десять лет ; учет национального дохода , урожая ведется один раз в год ; ежедневно регистрируются курсы покупки и продажи валют , и т. д.
3)Числовые уровни рядов динамики должны быть упорядоченными во времени . Не допускается анализ рядов с пропусками отдельных уровней , если же такие пропуски неизбежны , то их восполняют условными расчетными значениями.
1.3 Тенденция и колеблемость в рядах динамики
При сравнении уровней разных лет можно отметить , что в целом показатель растет . Однако нередки случаи , когда , например , уровень урожайности предыдущего года оказывается выше , чем в последующем году . Иногда рост по сравнению с предыдущим годом велик , иногда мал . Следовательно , рост наблюдается лишь в среднем , как тенденция . В остальные же годы происходят колебания , отклоняясь от данной основной тенденции .
Если рассматривать динамические ряды месячных уровней производства молока , мяса , ряды объема продаж разных видов обуви или одежды , ряды заболеваемости населения , выявляются регулярно повторяющиеся из года в год сезонные колебания уровней . В силу солнечно – земных связей частота полярных сияний , интенсивность гроз , те же изменения урожайности отдельных сельскохозяйственных культур и ряд других процессов имеют циклическую 10 – 11 летнюю колеблемость . Колебания числа рождений , связанные с потерями в войне , повторяются с угасающей амплитудой через поколения , то есть через 20 – 25 лет.
Тенденция динамики связана с действием долговременно существующих факторов , причин и условий развития , хотя , конечно , после какого – то периода условия могут измениться и породить уже другую тенденцию развития изучаемого объекта . Колебания же , напротив , связаны с действиями краткосрочных или циклических факторов , влияющих на отдельные уровни динамического ряда , и отклоняющих уровни тенденции то в одном , то в другом направлении .
Например , тенденция динамики урожайности связана с прогрессом агротехники , с укреплением экономики данной совокупности хозяйств совершенствованием организации производства . Колеблемость урожайности вызвана чередованием благоприятных по погоде и неблагоприятных лет , циклами солнечной активности и т. д.
При статистическом изучении динамики необходимо четко разделить два ее основных элемента – тенденцию и колеблемость , чтобы дать каждому из них количественную характеристику с помощью специальных показателей . Смешение тенденции и колеблемости ведет к неверным выводам о динамике .
1.4 Структура ряда динамики . Задачи , решаемые с помощью рядов динамики . Взаимосвязанные ряды динамики .
Всякий ряд динамики теоретически может быть представлен в виде составляющих :
1) тренд – основная тенденция развития динамического ряда ( к увеличению или снижению его уровней) ;
2) циклические (периодические колебания , в том числе сезонные);
3) случайные колебания.
С помощью рядов динамики изучение закономерностей развития социально – экономических явлений осуществляется в следующих основных направлениях :
1) Характеристика уровней развития изучаемых явлений во времени ;
2) Измерение динамики изучаемых явлений посредством системы статистических показателей ;
3) Выявление и количественная оценка основной тенденции развития (тренда) ;
4) Изучение периодических колебаний ;
5) Экстраполяция и прогнозирование .
Под взаимосвязанными рядами динамики понимают такие , в которых уровни одного ряда в какой – то степени определяют уровни другого . Например , ряд , отражающий внесение удобрений на 1 га , связан с временным рядом урожайности , ряд уровней средней выработки связан с рядом динамики средней заработной платы , ряд среднегодового поголовья молочного стада определяет годовые уровни надоев молока и т.д.
2. ПОКАЗАТЕЛИ , РАССЧИТЫВАЕМЫЕ НА ОСНОВЕ РЯДОВ ДИНАМИКИ
2.1Статистические показатели динамики социально – экономических явлений .
Для количественной оценки динамики социально – экономических явлений применяются статистические показатели : абсолютные темпы роста и прироста , темпы наращивания и т. д.
В основе расчета показателей рядов динамики лежит сравнение его уровней . В зависимости от применяемого способа сопоставления показатели динамики могут вычисляться на постоянной и переменной базах сравнения .
Для расчета показателей динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем . Исчисляемые при этом показатели называются базисными . Для расчета показателей динамики на переменной базе каждый последующий уровень ряда сравнивается с предыдущим . Такие показатели называются цепными .
Способы расчета показателей динамики рассмотрим на данных товарооборота магазина в 1987 – 1991 гг. (см. таб. 2).
Абсолютный прирост – важнейший статистический показатель динамики , определяется в разностном соотношении , сопоставлении двух уровней ряда динамики в единицах измерения исходной информации . Бывает цепной и базисный :
1) Базисный абсолютный прирост определяется как разность между сравниваемым уровнем и уровнем , принятым за постоянную базу сравнения(формула 1):
(1)
2) Цепной абсолютный прирост – разность между сравниваемым уровнем и уровнем , который ему предшествует, (формула 2):
(2)
Абсолютный прирост может иметь и отрицательный знак , показывающий , насколько уровень изучаемого периода ниже базисного .
Между базисными и абсолютными приростами существует связь : сумма цепных абсолютных приростов равна базисному абсолютному приросту последнего ряда динамики (формула 3):
(3)
Ускорение – разность между абсолютным приростом за данный период и абсолютным приростом за предыдущий период равной длительности (формула 4):
(4)
Показатель абсолютного ускорения применяется только в цепном варианте , но не в базисном . Отрицательная величина ускорения говорит о замедлении роста или об ускорении снижения уровней ряда .
Темп роста – распространенный статистический показатель динамики . Он характеризует отношение двух уровней ряда и может выражаться в виде коэффициента или в процентах .
1) Базисные темпы роста исчисляются делением сравниваемого уровня на уровень , принятый за постоянную базу сравнения, по формуле 5 :
(5)
2) Цепные темпы роста исчисляются делением сравниваемого уровня на предыдущий уровень (формула 6):
(6)
Если темп роста больше единицы (или 100%) , то это показывает на увеличение изучаемого уровня по сравнению с базисным . Темп роста ,равный единице (или 100%) , показывает , что уровень изучаемого периода по сравнению с базисным не изменился . Темп роста меньше единицы (или 100%) показывает на уменьшение уровня изучаемого периода по сравнению с базисным. Темп роста всегда имеет положительный знак .
Между базисными и цепными темпами роста имеется взаимосвязь : произведение последовательных цепных темпов роста равно базисному темпу роста , а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста .
Темпы прироста характеризуют абсолютный прирост в относительных величинах . Исчисленный в процентах темп прироста показывает , на сколько процентов изменился сравниваемый уровень по отношению к уровню , принятому за базу сравнения .
1) Базисный темп прироста вычисляется делением сравниваемого базисного абсолютного прироста на уровень , принятый за постоянную базу сравнения (формула 7):
(7)
2) Цепной темп прироста -- это отношение сравниваемого цепного абсолютного прироста к предыдущему уровню (формула 8):
= : (8)
Между показателями темпа роста и темпа прироста существует взаимосвязь , выраженная формулами 9 и 10:
(%) = (%) -- 100 (9)
(при выражении темпа роста в процентах).
= -- 1 (10)
(при выражении темпа роста в коэффициентах).
Формулы (7) и (8) используют для нахождения темпов прироста по темпам роста .
Важным статистическим показателем динамики социально – экономических процессов является темп наращивания , который в условиях интенсификации экономики измеряет наращивание во времени экономического потенциала .
Вычисляются темпы наращивания Тн делением цепных абсолютных приростов на уровень , принятый за постоянную базу сравнения , по формуле 11:
(11)
2.2 Средние показатели в рядах динамики
Для получения обобщающих показателей динамики социально -- экономических явлений определяются средние величины : средний уровень , средний абсолютный прирост , средний темп роста и прироста и пр.
Средний уровень ряда динамики характеризует типическую величину абсолютных уровней .
В интервальных рядах динамики средний уровень у определяется делением суммы уровней на их число n (формула 12):
(12)
В моментном ряду динамики с равноотстоящими датами времени средний уровень определяется по формуле 13:
(13)
В моментном ряду динамики с неравноотстоящими датами средний уровень определяется по формуле 14:
, (14)
где – уровни ряда динамики , сохранившиеся без изменения в течение промежутка времени .
Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики . Для определения среднего абсолютного прироста сумма цепных абсолютных приростов делится на их число n (формула 15):
(15)
Средний абсолютный прирост может определяться по абсолютным уровням ряда динамики . Для этого определяется разность между конечным и базисным уровнями изучаемого периода , которая делится на m – 1 субпериодов (формула 16):
(16)
Основываясь на взаимосвязи между цепными и базисными абсолютными приростами , показатель среднего абсолютного прироста можно определить по формуле 17:
(17)
Средний темп роста – обобщающая характеристика индивидуальных темпов роста ряда динамики . Для определения среднего темпа роста применяется формула 18:
(18)
где Тр1 , Тр2 , ... , Трn -- индивидуальные (цепные) темпы роста (в коэффициентах), n -- число индивидуальных темпов роста.
Средний темп роста можно определить и по абсолютным уровням ряда динамики по формуле 19:
(19)
На основе взаимосвязи между цепными и базисными темпами роста средний темп роста можно определить по формуле 20:
(20)
Средний темп прироста можно определить на основе взаимосвязи между темпами роста и прироста . При наличии данных о средних темпах роста для получения средних темпов прироста используется зависимость , выраженная формулой 21:
(21)
(при выражении среднего темпа роста в коэффициентах)
2.3
Проверка ряда на наличие тренда. Непосредственное выделение тренда
Изучение тренда включает в себя два основных этапа :
1) Ряд динамики проверяется на наличие тренда
2) Производится выравнивание временного ряда и непосредственное выделение тренда с экстраполяцией полученных показателей – результатов .
Проверка на наличие тренда
в ряду динамики может быть осуществлена по нескольким критериям .
1) Метод средних . Изучаемый ряд динамики разбивается на несколько интервалов (обычно на два) , для каждого из которых определяется средняя величина () . Выдвигается гипотеза о существенном различии средних . Если эта гипотеза принимается , то признается наличие тренда .
2) Фазочастотный критерий знаков первой разности (критерий Валлиса и Мура) . Суть его заключается в следующем : наличие тренда в динамическом ряду утверждается в том случае , если этот ряд не содержит либо содержит в приемлемом количестве фазы – изменение знака разности первого порядка (абсолютного цепного прироста).
3) Критерий Кокса и Стюарта . Весь анализируемый ряд динамики разбивают на три равные по числу уровней группы (в том случае , когда число уровней ряда не делится на три , недостающие уровни надо добавить) и сравнивают между собой уровни первой и последней групп .
4) Метод серий . По этому способу каждый конкретный уровень временного ряда считается принадлежащим к одному из двух типов : например , если уровень ряда меньше медианного значения , то считается , что он имеет тип А , в противном случае – тип В. Теперь последовательность уровней выступает как последовательность типов . В образовавшейся последовательности типов определяется число серий (серия – любая последовательность элементов одинакового типа , с обоих сторон граничащая с элементами другого типа).
Если в ряду динамики общая тенденция к росту или снижению отсутствует , то количество серий является случайной величиной , распределенной приближенно по нормальному закону (для n > 10) . Следовательно , если закономерности в изменениях уровней нет , то случайная величина R оказывается в доверительном интервале
.
Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.
Среднее число серий вычисляется по формуле 22 :
. (22)
Среднее квадратическое отклонение числа серий вычисляется по формуле 23 :
. (23)
здесь n -- число уровней ряда .
Выражение для доверительного интервала приобретает вид
Полученные границы доверительного интервала округляют до целых чисел , уменьшая нижнюю границу и увеличивая верхнюю .
Непосредственное выделение тренда
может быть произведено тремя методами .
1) Укрупнение интервалов . Ряд динамики разделяют на некоторое достаточно большое число равных интервалов . Если средние уровни по интервалам не позволяют увидеть тенденцию развития явления , переходят к расчету уровней за большие промежутки времени , увеличивая длину каждого интервала (одновременно уменьшается количество интервалов) .
2) Скользящая средняя . В этом методе исходные уровни ряда заменяются средними величинами , которые получают из данного уровня и нескольких симметрично его окружающих . Целое число уровней , по которым рассчитывается среднее значение , называют интервалом сглаживания . Интервал может быть нечетным (3,5,7 и т.д. точек) или четным (2,4,6 и т.д. точек).
При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала , при четном это делать нельзя . Поэтому при обработке ряда четными интервалами их искусственно делают нечетными , для чего образуют ближайший больший нечетный интервал , но из крайних его уровней берут только 50%.
Недостаток методики сглаживания скользящими средними состоит в условности определения сглаженных уровней для точек в начале и конце ряда . Получают их специальными приемами – расчетом средней арифметической взвешенной . Так , при сглаживании по трем точкам выровненное значение в начале ряда рассчитывается по формуле 24 :
. (24)
Для последней точки расчет симметричен .
При сглаживании по пяти точкам имеем такие уравнения (формулы 25):
(25)
Для последних двух точек ряда расчет сглаженных значений полностью симметричен сглаживанию в двух начальных точках .
Формулы расчета по скользящей средней выглядят , в частности , следующим образом (формула 26):
для 3--членной . (26)
3) Аналитическое выравнивание . Под этим понимают определение основной проявляющейся во времени тенденции развития изучаемого явления . Развитие предстает перед исследователем как бы в зависимости только от течения времени . В итоге выравнивания временного ряда получают наиболее общий , суммарный , проявляющийся во времени результат действия всех причинных факторов . Отклонение конкретных уровней ряда от уровней , соответствующих общей тенденции , объясняют действием факторов , проявляющихся случайно или циклически . В результате приходят к трендовой модели , выраженной формулой 27:
, (27)
где f(t) – уровень , определяемый тенденцией развития ;
-- случайное и циклическое отклонение от тенденции.
Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t) . На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t) , а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом , чтобы она давала содержательное объяснение изучаемого процесса .
Чаще всего при выравнивании используются следующий зависимости :
линейная ;
параболическая ;
экспоненциальная
или ).
1) Линейная зависимость выбирается в тех случаях , когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные и цепные приросты , не проявляющие тенденции ни к увеличению , ни к снижению.
2) Параболическая зависимость используется , если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития , но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют .
3) Экспоненциальные зависимости применяются , если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста , темпов прироста , коэффициентов роста) , либо , при отсутствии такого постоянства , -- устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста , цепных коэффициентов роста цепных же коэффициентов или темпов роста и т.д.).
Оценка параметров () осуществляется следующими методами :
1) Методом избранных точек,
2) Методом наименьших расстояний,
3) Методом наименьших квадратов (МНК)
В большинстве расчетов используется метод наименьших квадратов , который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных :
.
Для линейной зависимости () параметр обычно интерпретации не имеет , но иногда его рассматривают , как обобщенный начальный уровень ряда ; -- сила связи , т. е. параметр , показывающий , насколько изменится результат при изменении времени на единицу . Таким образом , можно представить как постоянный теоретический абсолютный прирост .
Построив уравнение регрессии , проводят оценку его надежности . Это делается посредством критерия Фишера (F) . Фактический уровень () , вычисленный по формуле 28, сравнивается с теоретическим (табличным) значением :
, (28)
где k -- число параметров функции , описывающей тенденцию;
n -- число уровней ряда ;
Остальные необходимые показатели вычисляются по формулам 29 – 31 :
(29)
(30)
(31)
сравнивается с при степенях свободы и уровне значимости a (обычно a = 0,05). Если >, то уравнение регрессии значимо , то есть построенная модель адекватна фактической временной тенденции.
2.4
Анализ сезонных колебаний
Уровень сезонности оценивается с помощью :
1) индексов сезонности ;
2) гармонического анализа.
Индексы сезонности
показывают , во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня , вычисляемого по уравнению тенденции f(t) . При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет . Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года . Индексы сезонности – это , по либо уровень существу , относительные величины координации , когда за базу сравнения принят либо средний уровень ряда , либо уровень тенденции . Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции .
Если тренда нет или он незначителен , то для каждого месяца (квартала) индекс рассчитывается по формуле 32:
(32)
где -- уровень показателя за месяц (квартал) t ;
-- общий уровень показателя .
Как отмечалось выше , для обеспечения устойчивости показателей можно взять больший промежуток времени . В этом случае расчет производится по формулам 33 :
(33)
где -- средний уровень показателя по одноименным месяцам за ряд лет ;
Т -- число лет .
При наличии тренда индекс сезонности определяется на основе методов , исключающих влияние тенденции . Порядок расчета следующий :
1) для каждого уровня определяют выравненные значения по тренду f(t);
2) рассчитывают отношения ;
3) при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле 34 :
,(Т -- число лет). (34)
Другим методом изучения уровня сезонности является гармонический анализ
. Его выполняют , представляя временной ряд как совокупность гармонических колебательных процессов .
Для каждой точки этого ряда справедливо выражение , записанное в виде формулы 35 :
(35)
при t = 1, 2, 3, ... , Т.
Здесь -- фактический уровень ряда в момент (интервал) времени t;
f(t) – выравненный уровень ряда в тот же момент (интервал) t
-- параметры колебательного процесса (гармоники) с номером n , в совокупности оценивающие размах (амплитуду) отклонения от общей тенденции и сдвиг колебаний относительно начальной точки .
Общее число колебательных процессов , которые можно выделить из ряда , состоящего из Т уровней , равно Т/2. Обычно ограничиваются меньшим числом наиболее важных гармоник . Параметры гармоники с номером n определяются по формулам 36 –38 :
1) ; (36)
2)
(37)
при n=1,2,...,(T/2 – 1);
3) (38)
2.4
Анализ взаимосвязанных рядов динамики .
В простейших случаях для характеристики взаимосвязи двух или более рядов их приводят к общему основанию , для чего берут в качестве базисных уровни за один и тот же период и исчисляют коэффициенты опережения по темпам роста или прироста .
Коэффициенты опережения по темпам роста – это отношение темпов роста (цепных или базисных) одного ряда к соответствующим по времени темпам роста (также цепным или базисным) другого ряда . Аналогично находятся и коэффициенты опережения по темпам прироста .
Анализ взаимосвязанных рядов представляет наибольшую сложность при изучении временных последовательностей . Однако нередко совпадение общих тенденций развития может быть вызвано не взаимной связью , а прочими неучитываемыми факторами . Поэтому в сопоставляемых рядах предварительно следует избавиться от влияния существующих в них тенденций , а после этого провести анализ взаимосвязи по отклонениям от тренда . Исследование включает проверку рядов динамики (отклонений) на автокорреляцию и установление связи между признаками .
Под автокорреляцией понимается зависимость последующих уровней ряда от предыдущих . Проверка на наличие автокорреляции осуществляется по критерию Дарбина – Уотсона (формула 39) :
, (39)
где -- отклонение фактического уровня ряда в точке t от теоретического (выравненного) значения .
При К = 0 имеется полная положительная автокорреляция , при К = 2 автокорреляция отсутствует , при К = 4 – полная отрицательная автокорреляция . Прежде чем оценивать взаимосвязь , автокорреляцию необходимо исключить . Это можно сделать тремя способами .
1. Исключение тренда с авторегрессией. Для каждого из взаимосвязанных рядов динамики Х и У получают уравнение тренда (формулы 40) :
(40)
Далее выполняют переход к новым рядам динамики , построенным из отклонений от трендов , рассчитанным по формулам 41 :
(41)
Для последовательностей выполняется проверка на автокорреляцию по критерию Дарбина – Уотсона . Если значение К близко к 2 , то данный ряд отклонений оставляют без изменений . Если же К заметно отличается от 2 , то по такому ряду находят параметры уравнения авторегрессии по формулам 42 :
(42)
Более полные уравнения авторегрессии можно получить на основе анализа автокорреляционной функции , когда определяются число параметров () и соответствующие этим параметрам величины шагов .
Далее по формуле 43 подсчитываются новые остатки :
(t = 1, ... , Т) (43)
и , по формуле 44, коэффициент корреляции признаков :
. (44)
2. Корреляция первых разностей . От исходных рядов динамики Х и У переходят к новым , построенным по первым разностям (формулы 45) :
(45)
По DХ и DУ определяют по формуле 46 направление и силу связи в регрессии:
(46)
3. Включение времени в уравнение связи : .
В простейших случаях уравнение выглядит следующим образом (формула 47):
(47)
Из перечисленных методов исключения автокорреляции наиболее простым является второй , однако более эффективен первый .
|