Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Экономическая кибернетика

Название: Экономическая кибернетика
Раздел: Рефераты по экономико-математическому моделированию
Тип: реферат Добавлен 01:32:42 02 августа 2005 Похожие работы
Просмотров: 628 Комментариев: 17 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать

Эк. Кибернетика.

Игра – матем. Модель конфликтной ситуации.

Стратегия игрока – это правила выбора действий в сложившейся ситуации.

Решение игры – это нахождение оптимальной стратегии для каждого игрока, т.е. нахождение цены игры.

Оптимальная стратегия игрока – это стратегия, которая в среднем (настрив. на длительную игру) дает игроку возможный наибольший выигрыш.

Неонтогонистическая – если выигрыш одной из сторон склад. из проигрыша др. стороны, иначе антогонистическая – выигрыш одного равен проигрышу др.

Матричные игры.

- самые простые игры. Играют 2 чел. У каж конечное число стратегий. Список стратегий известен каж играющему, т.е. игра с полной инф. Игра одноходовая.

Величина выигрыша известна заранее, опис. В числовых единицах. Оба дейст. Сознательны, никто не поддается. Игра яв-ся антогонистической. Правила определяют победителя.

Игры с седловой точкой обладают св-м устойчивости – если один игрок примен оптим стратегию, то др. игроку не выгодно отклон-ся от своей оптим стратегии.

Первонач сведен по т. вероятности.

Случайные событие – это событие, которое может произойти или не произойти в данной ситуации.

Вероятность – это количественная характеристика, мера появ-я событий.

P( А)=(число благопр. событий)/(общее число событий).

М(х)= å i хi pi матем. ожидание .

D(x)= å i х2 i pi (M(x))2 дисперсия.

s (x)= Ö D(x) – средне квадратичное отклонение – показывает степень разбросанности значений случайной величины относительно матем. ожидания.

Правило 3 сигм ( s ) :

P í M(x)-3 s (x)<x<M(x)+3 s (x) ý = 0 ,997

÷ Вероятность того, что сличайная величина х попадает в интервал с концами матем. ожидания -3s(х) и +3s(х) равняется 0,997.

Многоуголь. распределение – ломанная линия соед-я последовательно точки с коор-ми (хi ;pi ).

Смешанные стратегии.

- распределение вероятностей на множестве его чистых стратегий, обобщение обычной стратегии.

Чистая стратегия – это стратегия, которая применяется с вероятностью 1.

Теорема Неймана : Любая матричная игра имеет оптимальное решение возможно среди смешанных стратегий.

Стратегия А i активная первого игрока – если вероятность исполь-я в оптим стратегии больше нуля (Аi -акт, если р* i >0); S* A - оптим стратегия.

Стратегия В j активная второго игрока – если вероятность исполь-я ее в опти стратегии больше нуля (Bi -акт, если q* i >0); S* B - оптим стратегия.

Неактивная стратегия – вероятность применения, которой в оптим стратегии равна нулю.

Теорема устойчивости: Если один игрок применяет свою оптим стратегию, то 2 игроку не выгодно выходить за рамки своих активных стратегий.

Теорема : В матр. игре количество активных стратегий у каж игрока одинаковое.

Применение решений в усл. неопределенности.

Рассмотрим игру человек и природа. Человек – лицо принимающее решение. Природа – экон-я среда в состоянии рынка.

Отличия от матричной игры : Активные решения принимает только чел, он хочет найти наиболее оптим решение. У природы стихийное поведение и она не стремится к выигрышу. Считается, что чел знает список сост природы, но не знает какое из них будет фактическим. В игре с природой чел труднее сделать свой выбор, поэтому сущ несколько подходов нахождения оптимального решения.

Подход определяется склонностью чел к риску.

Риск – это может быть упущенная выгода или необход понести дополнит произв-е затраты.

Элементы матрицы – это ожидание резуль. Деятельности в завис от сост природы.

1) Подход махмах оптимистический” : В каж точке мы находим макс элемент и после этого находим макс из полученных чисел. gi =maxj aij Þg=maxi gi =gi0 Þ выб Аi0 .

Выбираем макс значение. Чел ориентир на самый лучший возмож результат, не обращ внимание на возмож неудачи.

2) Критерий Вальда – критерий пессимизма : Находим в каж строчке миним элемент и выбираем ту стратегию, которая дает макс гарантируемый доход.

ai =minj aij Þa=maxi ai =ai Þ выб Аi0 .

3)Критерий Гурвица ( l ) – ур пессимизма : Человек выбирает 0£l£1. Находим число a i = l a i +(1- l ) g i Þa maxi a i = a i0 Þвыб Аi0 . Если l=1 – кр Вальда (пессимизма), если l=0 – кр оптимизма. Конкретная величина l опред-ся эк-ой ситуацией.

4) Критерий Сэвиджа – кр минимального риска : Состав март риска по формуле rij = b j ij . bij =max aij Þ rij =bj -aij .

R=(rij ) –матр риска; ri =maxj rij Þ mini ri =ri0 Þ выб Аi0 .

Если бы мы знали, то мы бы выбрали наиболее эф-е решение. Для самого эф-го решения: rij =0 (если Пj ) Þ Аi . Риск = величине упущенной возможности.

У каж критерия есть свои особенности применения. Если мы оценив ситуацию по разным критериям, то мы можем принять более обоснован решение. Трудность обоснования яв-ся, что природа не стремится к выигрышу.

Принятие решения в усл риска.

Рассотрим вариант игры чел и природы в случаи, когда нам известно сост природы. Природа к выигрышу не стремится. Находим стратегию, которая приносит макс средний доход. Средний доход расчитывается по правилу теории вероятности.

Величина среднего дохода равна матем ожиданию при этой стратегии.

1) М(Ai )=n åj=1 aij pj Находим макс maxi M(Ai )

2) Правило минималь среднего риска. R=(Ai )=n åj=1 rij pj . Находим наимень mini R(Ai ).

Лемма : Указ выше 2 критерия в результате всегда приводят к выбору одной и той же оптим стратегии.

Док-во: Найдем миним сред риска mini R(Ai )= mini åj rij pj = minij (bjij )pj )= minij bj pjj аij pj )={åj bj pj – не зависит от переменной i, значит это const С}= mini (С-åj аij pj )Þ минимум разности соот-ет максимуму вычитаемого.

maxi åj аij pj =M(Ai ).

Номера стратегий, на которых достиг миним среднего риска, равны номерам стратегий обеспеч наиболь средний выигрыш.

Бейссовский подход нахождения оптимального решения.

Бейсовский подход: Если первонач распредел вероятности мы получ доход `Q` . Если мы можем провести эксперемент дающий новое распред вероятности в завис от первонач `Q` и нового `Q’ , мы делаем свой выбор стратегии. p'Þ`Q’` .

Некоторые св-ва матричной игры.

Замеч№1 О масштабе игр : Пусть даны 2 игры одинаковой размерности с платежной матрицей р(1) и р(2) . При чем при любых i и j выпол (а(2) ij =aa(1) ij +b), некоторые числа a и b. Тогда: 1) опт стратегии 1 игрока в 1 и 2 игре одинаковые. Опт стратегии 2 игрока одинаковы в обеих играх.

2) Цена второй игры V2 =aV1 +b.

Для некот методов решений все элементы матр должны быть не отрицательными.

Заме№2 О доминировании стратегий : Этот прием применяется для умень размерности игры.

А : Аi доминирует над Акiк ), если для любого j выпол нерав-во аij >akj и хотя бы одно из этих нерав-в строгое.

Ак – заведомо невыгодна; сред размер выигрыша меньше; р* к =0, стратегия пассивная.

В : Вj доминирует над Вtjt ), если для любого i выпол нерав-во аij >ait и хотя бы одно из этих нерав-в строгое.

Bt – невыгодна Þ q* t =0 – актив стратегия.

Доминир стратегии вычеркиваются и получ матр меньшей размерностью.

Замеч№3 Сравнение операций по методу Парето : Допустим есть операции Q1 , Q2 ,… Qn . Для каж опер-и расчит 2 параметра: 1) E(Q) – эффективность (доход);

2) r(Q) – степень риска (s-сред квадратич отклон).

Самая лучшая операция – это опер с наилуч эф-ю и с наимень риском. F(Q)= k E(Q)-r(Q) , где k - это склонность к риску (не мат проблема). Находим макс из этих критериев maxi F(Qi ). Операция Qi >Q, если эф-ть не менее E(Qi )³E(Qj ), а риск опер r(Qi )£r(Qj ) и хотя бы одно из нерав-в строгое.

Доминир страт отбрас, как заведомо невыгодные.

Множ Парето – это все недоминир-е операции. Наиболее эф-е среди них.

Понятие о позиционных игр.

У каж игрока своя платежная матрица. Выигрыш одного не означ проигр др. Таким способом можно высчитывать взаимные интересы игроков, а также возможность образования коалиции. Можно расчит динамические игры учитывая фактор времени и т.д.

Позиционные игры возникает в случаи, когда надо принимать последо-но несколько решений, при чем выбор решения опираются на предыдущ-е решения.

Рассотрим простейш случ позиц-й игры с природой. Решение изобр в виде дерева решений.

Дерево решений – граф-е изобр-е всех возможных альтернатив игрока и сост природы с указ вероятности соответ-х состояний и размеров выигрыша в каж ситуации.

Альтернатива игрока изобр квадратом – список возможных стратегий в соот-й ситуации. Сост-е природы кружочком, чел на них влиять не может. Делается оценка каж вершины и наход макс оценка ситуаций соот-х каж ветви дерева решений.

EMV денежное решение; EMV= å i ( отдача в i- ом сост-и )pi

maxвершина (EMV)=?

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Делаю рефераты, курсовые, контрольные, дипломные на заказ. Звоните или пишите вотсап, телеграмм, вайбер 89675558705 Виктория.
12:50:02 20 октября 2021
Если Вам нужна помощь с учебными работами, ну или будет нужна в будущем (курсовая, дипломная, отчет по практике, контрольная, РГР, решение задач, онлайн-помощь на экзамене или "любая другая" учебная работа...) - обращайтесь: https://clck.ru/P8YFs - (просто скопируйте этот адрес и вставьте в браузер) Сделаем все качественно и в самые короткие сроки + бесплатные доработки до самой сдачи/защиты! Предоставим все необходимые гарантии.
Калерия05:40:02 23 июня 2020
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya23:20:48 24 августа 2019
.
.23:20:48 24 августа 2019
.
.23:20:47 24 августа 2019

Смотреть все комментарии (17)
Работы, похожие на Реферат: Экономическая кибернетика

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286107)
Комментарии (4150)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте