Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Адгезионные свойства металлов и полупроводников в рамках диэлектрического формализма

Название: Адгезионные свойства металлов и полупроводников в рамках диэлектрического формализма
Раздел: Рефераты по математике
Тип: статья Добавлен 18:32:07 24 марта 2007 Похожие работы
Просмотров: 98 Комментариев: 17 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

А.Н. Вакилов, М.В. Мамонова, В.В. Прудников, Омский государственный университет, кафедра теоретической физики

При описании адгезионных свойств материалов особенно эффективно полупроводников использован подход, основанный на диэлектрическом формализме. Использование модельных аппроксимаций для диэлектрических функций данных материалов позволяет определить их адгезионные характеристики на основе только концентрации валентных электронов и ширины запрещенной зоны.Возможности данного подхода при его применении к вычислению молекулярных (ван-дер-ваальсовых) сил взаимодействия поверхностей различных тел показаны, например, в работе [3].Ван-дер-ваальсовы силы обуславливают взаимодействие тел при достаточно больших величинах зазора l между их поверхностями и связаны с корреляционными эффектами взаимодействия посредством флуктуирующего электромагнитного поля, вызванного флуктуациями наведенных дипольных моментов атомов и молекул вещества. При меньших величинах зазора наряду с корреляционной энергией взаимодействия необходимо учитывать флуктуационную составляющую обменной энергии взаимодействия электронов с обменно-коррелляционными дырками. Совместное действие этих обменно-корреляционных эффектов взаимодействия электронов и определяет прежде всего энергию адгезии различных тел как при малых,так и достаточно больших величинах зазора l вплоть до см , где в корреляционной энергии взаимодействия тел необходимо учитывать эффекты запаздывания.В данной работе эффекты запаздывания не учитываются, т.е. считается, что . Основные соотношения теории для обменно-корреляционного взаимодействия флуктуаций электронных плотностей различных тел рассматриваются в длинноволновом приближении.

Рассмотрим взаимодействие между двумя полубесконечными материалами, находящимися при температуре Т=0 К и занимающими области z<0 и z>l. Пренебрежение эффектами запаздывания во взаимодействии тел позволяет в уравнениях Максвелла формально положить и тем самым использовать уравнение электростатики для потенциала электростатического поля в данной системе:

(1)

и получить

(2)

Нас интересуют решения, имеющие характер коллективных колебаний, локализованных у поверхности (изчезающие при ). В результате из (2) имеем:

(3)

Сшивая решения (3) на границе раздела (z=0,l) из условий непрерывности тангенциальной составляющей напряженности электрического поля и нормальной составляющей электрической индукции (эти условия эквивалентны непрерывности и ), получаем как условие существования нетривиального решения следущее дисперсионное уравнение для поверхностных волн в системе:

(4)

Корни этого уравнения и есть интересующие нас собственные частоты поверхностных колебаний.Для их нахождения необходимо задать явный вид функций диэлектрической проницаемости для 1 и 2 материалов в рамках той или иной принимаемой модели взаимодействия этих сред. Согласно [3], энергия взаимодействия,связанная с наличием поверхностей раздела двух полубесконечных тел,находящихся на расстоянии l (в расчете на единицу площади), равна

(5)

где функция задана в (4). Функция является аналитической функцией везде, кроме конечного числа полюсов , соответствующих частотам поверхностных волн при . Нули , равные , соответствуют частотам поверхностныхволн при произвольных, но конечных l. Согласно принципу аргумента в теории функций комплексного переменного, интеграл равен разности между полным числом нулей и полюсов функции . В итоге получим

(6)

Эта формула имеет простой физический смысл: энергия взаимодействия равна разности энергий "нулевых"поверхностных колебаний, когда тела находятся соответственно на расстояниях l и . Нас интересуют коллективные возбуждения электронной системы твердых тел, обусловленные взаимодействием электронов с обменно-корреляционными дырками. Рассмотрим электронную систему в рамках модели "желе", когда заряд электронов каждого из материалов скомпенсирован однородным положительным фоном. Учет обменных и корреляционных эффектов во взаимодействии электронов осуществляется в приближении Хартри-Фока. Коллективные возбуждения электронной системы - плазмоны в длинноволновом приближении математически соответствуют использованию приближения хаотических фаз, в рамках которого диэлектрические проницаемости материалов можно записать в виде [4,5]:

(7)

где - соответственно плазменная частота, фермиевская скорость и концентрация электронов валентной зоны n-го материала; Egn - ширина запрещенной зоны этого материала; -корректирующий множитель,численные коэффициенты в котором обеспечивают стандартную дисперсию объемной плазменной частоты [5]:

(8)

Для определения закона дисперсии собственных поверхностных плазменных колебаний , соответствующих величине зазора между материалами l и , необходимо подставить диэлектрические проницаемости материалов из (7) в дисперсионное уравнение (4). Для случая дисперсионное уравнение (4) приводит к соотношениям :

(9)

определяющим частоты поверхностных плазмонов на границе раздела n-го материала с вакуумом.Откуда с учетом (7) получаем:

(10)

Решение дисперсионного уравнения (4) в случае произвольного l приводит к следующим выражениям для поверхностных плазменных частот :

(11)

где использованы обозначения j=1,2 , соответствующие в (11) знакам ,

Для расчета энергии взаимодействия материалов необходимо полученные выражения (10), (11) для и подставить в (6) и проинтегрировать по волновым векторам. Но здесь следует учитывать,что поверхностные плазмоны при некотором критическом значении волнового вектора kc , определяемом условием

(12)

распадаются, передавая свою энергию и импульс одиночным фермиевским электронам [6]. Это означает,что при k<kc плазмон не может существовать как когерентное движение всех электронов, т.е. он становится практически ненаблюдаемым.Каждая из плазменных мод для различных материалов развязана при и характеризуется своим критическим значением волнового вектора kcn. В связи с этим необходимо в расчетах по формуле (6) проводить интегрирование по волновым векторам k < kcmin , где kcmin соответствует минимальному из значений критических волновых векторов kcn рассматриваемых материалов. Тем самым принимается во внимание вклад во взаимодействие E(l) только коллективных состояний.Энергия адгезии двух различных материалов непосредственно связана с энергией взаимодействия E(l). ТакE (l)= -2Ea(l) [7] и, следовательно,итоговая расчетная формула для энергии адгезии материалов,разделенных зазором l, принимает вид

(13)

Рис. 2: Энергия адгезии ряда металлов и полупроводников в зависимости от величины вакуумного промежутка l между поверхностями материалов: 1 - Cr-Fe; 2 - Fe-Cu; 3 - Cu-Al; 4 - Ge-ZnS; 5 - Al-InSb.

Рис. 3: Сила адгезии ряда металлов и полупроводников в зависимости от величины вакуумного промежутка l между поверхностями материалов: 1 - Cr-Fe; 2 - Fe-Cu; 3 - Cu-Al;4 - Ge-ZnS; 5 -Al-InSb.

На рис.1 приведены результаты расчета на ПЭВМ энергии адгезии для ряда простых и переходных металлов, а также полупроводников в зависимости от величины зазора l. Для расчета были использованы экспериментальные значения плазменных частот [5].

Сила адгезионного взаимодействия различных материалов как функция величины зазора l между ними может быть получена дифференцированием энергии адгезии Ea12(l) по l, т.е.

(14)

Следует отметить,что во всем диапазоне изменения l в области применимости теории сила адгезионного взаимодействия металлов и полупроводников имеет характер притяжения (рис.2). При электронные системы двух материалов разделены, обменные эффекты при этом несущественны, оставшиеся корреляционные эффекты взаимодействия электронных систем будут соответствовать ван-дер-ваальсовым силам взаимодействия без учета запаздывания [3]. Таким образом они автоматически учитываются в приведенных формулах. В заключении отметим, что использование диэлектрического формализма и представления о поверхностных плазмонах для описания адгезионных свойств различных материалов дает возможность после значительно меньшей по объему вычислительной работы по сравнению с методом функционала плотности получить достаточно корректные результаты, особенно ценные в области достаточно больших величин зазора l, где преобладают ван-дер-ваальсовы силы взаимодействия, учет которых невозможен в рамках метода функционала плотности.

Список литературы

Ухов В.Ф., Кобелева Р.М., Дедков Г.В., Темроков А.И. Электронно-статистическая теория металлов и ионных кристаллов. М.: Наука, 1982. 160 с.

Вакилов А.Н., Потерин Р.В., Прудников В.В., Прудникова М.В. // Физика металлов и металловедение. 1995. Т.79. С.13.

Бараш Ю.С., Гинзбург В.Л. //Успехи физ.наук. 1975. Т.116. Вып.1. С.5.

Неволин В.К., Фазылов Ф.Р., Шермергор Т.Д. //Поверхность. 1983. Т.1. С.79.

Пайнс Д., Нозьер Ф. Теория квантовых жидкостей. М.:Мир, 1967. 384 с.

Платцман Ф., Вольф П. Волны и взаимодействия в плазме твердого тела. М.: Мир, 1975. 440 с.

Wicborg E.C., Inglesfield J.E. //Solid State Comm.1975.V.16.P.335.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
23:06:02 10 сентября 2021
Если Вам нужна помощь с учебными работами, ну или будет нужна в будущем (курсовая, дипломная, отчет по практике, контрольная, РГР, решение задач, онлайн-помощь на экзамене или "любая другая" учебная работа...) - обращайтесь: https://clck.ru/P8YFs - (просто скопируйте этот адрес и вставьте в браузер) Сделаем все качественно и в самые короткие сроки + бесплатные доработки до самой сдачи/защиты! Предоставим все необходимые гарантии.
Астра02:24:11 24 июня 2020
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya03:10:45 25 августа 2019
.
.03:10:44 25 августа 2019
.
.03:10:44 25 августа 2019

Смотреть все комментарии (17)
Работы, похожие на Статья: Адгезионные свойства металлов и полупроводников в рамках диэлектрического формализма

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286115)
Комментарии (4150)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте