Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Подъем инвариантов классических групп

Название: Подъем инвариантов классических групп
Раздел: Рефераты по математике
Тип: статья Добавлен 19:34:08 24 марта 2007 Похожие работы
Просмотров: 15 Комментариев: 16 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

А.Н. Зубков, Омский государственный педагогический университет, кафедра алгебры

Пусть G простая алгебраическая группа одного из трех классических типов - B, C, D, над алгебраически замкнутым полем K произвольной характеристики. Группа G=G(n) канонически вложена в GL(n) для подходящего n [8]. Рассмотрим диагональное действие группы G на - m экземплярах пространства матриц M(n) сопряжениями. Возникает интересная задача - описать кольцо инвариантов In,m=K[M(n)m]G(n) . В предлагаемой работе будет доказано, что имеет место естественный эпиморфизм , который индуцирован каноническим отображением , где тогда и только тогда, когда , или (для симплектического случая определение другое, здесь зануляются все элементы вне "центрального" -блока). На остальных местах отображение тождественно.

Все необходимые сведения о модулях с хорошей фильтрацией (кратко модули с ХФ), можно найти в [5].

Мы будем использовать идею доказательства теоремы 2 из [5]. Пусть .

Cлучай B, D. Мы будем предполагать, что . Подходящим образом изменяя базис, мы можем считать, что . Более того, так как действие сопряжениями, то можно полагать даже, что .

Пара аффинных G-многообразий (G - произвольная редуктивная группа) называется хорошей, если K[W] и IV - G- модули с ХФ. Здесь IV - это идеал . Пусть W=M(n), V= C(A)=CG(A), где . Наша задача сейчас - показать, что и, что - хорошая пара.

Нетрудно проверить, что g-1Ag = En + (a-1)(xij), где xij = g1ig1j, g=(gij), En - единичная матрица. Обозначим через M(n)r множество матриц ранга , а через S - подпространство симметрических матриц в M(n).

Лемма 1. Класс сопряженности V совпадает с , где T - это множество всех матриц, удовлетворяющих условиям .

Обозначим множество через L

Доказательство. Легко проверить непосредственно, что M(n)1 совпадает с множеством матриц вида (xiyj), где независимо пробегают все векторы из n-мерного векторного пространства E(n). Пусть и лежит в . Тогда xiyj = yixj. Найдутся xi0 и yj0 не равные нулю, ведь . Тогда из xi0yj0 = yi0xj0 следует, что . Далее, если xi =0, тогда xi0yi= yi0xi =0, то есть yi=0 и наоборот. Другими словами, xi =0 тогда и только тогда, когда yi =0. Более того, для ненулевых коэффициентов отношение xi/yi является константой. Обозначим ее t. Переходя к параметрам xi'=t-1/2xi=yi'=t1/2yi, можно предполагать, что xi=yi для всех i. Подставляя в уравнения определяющие T и используя то, что , мы получим, что . Достроим cистему из одного вектора x до ортонормированного базиса пространства E(n) и расположим векторы этого базиса столбцами (причем x - первый) в матрице g. Ясно, что , и g-1Ag = En + (a-1)z. Таким образом, . Обратное включение очевидно.

Поскольку , то мы можем воспользоваться леммой 1 () [7] и заключить, что , если докажем, что нормальное многообразие. Cдвиг и умножение на (ненулевой) скаляр - гомеоморфизмы, поэтому достаточно показать, что нормально L. Пусть Sn - единичная сфера в E(n). Из сказанного выше ясно, что отображение из Sn в L по правилу является доминантным. В частности, мы имеем вложение . Образ этого вложения порожден элементами xixj. Алгебра имеет градуировку , где R0 - подпространство, натянутое на мономы четной степени, а R1 - нечетной. Элемент однороден относительно этой градуировки, поэтому "наследует" градуировку R. Будем обозначать ее теми же символами. Заметим еще, что K[L]=R0. Ранг якобиана равен 1 по крайней мере на , и . По критерию Серра ([6] , теорема 5.8.6), K[Sn] нормально (). Пусть теперь - целый над R0. Так как , то и . Следовательно, , то есть , откуда z1=0.

Согласно предложению 6.7 [2], чтобы доказать, что ( отождествляется с , где ZG(A) - централизатор элемента A, достаточно проверить, что дифференциал сюръективен. Однако . Используя формализм с двойными числами [8], имеем: . Таким образом, . Отсюда ясно, что образ имеет ту же размерность n-1. Итак, . Отметим еще для дальнейшего, что ZG(A) состоит из матриц, у которых правый "нижний" -угол - это произвольная матрица из G(n-1), а в первом столбце и первой строке везде стоят нули, кроме начала, где коэффициент равен .

По тем же соображениям, что и выше, осталось показать, что (M(n), L) - хорошая пара. Согласно лемме 1.3(a) [4], можно рассмотреть "башню" и проверить каждый "скачок". Рассмотрим сначала . Мы имеем коммутативную (все морфизмы G-эквивариантны) диаграмму:

где вертикальные стрелки - это просто включения. Переходя к координатным алгебрам, мы получим "дуальную" диаграмму:

В первой диаграмме горизонтальные стрелки - G-доминантные морфизмы, поэтому во второй - вложения. Отсюда ясно, что можно отождествить с (в принятых выше обозначениях). Здесь I - идеал, порожденный элементом f. Из тех же градуировочных соображений ясно, что . Осталось отметить, что f G-инвариант и, следовательно, G-модуль изоморфен R0. То, что R0 с ХФ, будет следовать из того, что - хорошая пара.

Пусть теперь по правилу . Ясно, что -эквивариантное отображение, где K* = GL(1) действует по правилу . Напомним, что отображение G-многообразий называется факторным, если сюръективно и . Хорошо известно, что K*-факторное отображение [4]. Обозначим через . Покажем, что (U, B) - хорошая пара. Функтор ограничения переводит GL(n)-модули с ХФ в G-модули с ХФ. Алгебра изоморфна как -модуль (Kl - это одномерный K*-модуль с весом l). Хорошо известно, что GL(n)-модуль Sk(E(n)) с ХФ [9]. По теореме Донкина-Матье, K[U] -модуль с ХФ. Заметим, что достаточно доказывать наличие ХФ только относительно G. Представим алгебру K[U] в виде . Отождествление происходит по правилу , где - стандартный базис E(n), а f1,f2 - E(2). Cогласно [1], имеет -фильтрацию c факторами , где - функтор Шура, пробегает все разбиения с . Нетрудно заметить, что идеал, порожденный xiyj-xjyi, совпадает с той частью фильтрации, где . Поскольку без кручения [3], то . В частности, IB с ХФ как G-модуль, а значит, и как -модуль. В итоге многообразия U, B, Z удовлетворяют условиям предложения 1.4(a) из [4]. А это значит в частности, что - хорошая пара. Осталось заметить, что (M(n), M(n)1) - хорошая GL(n)-пара по [4]. Согласно сказанному выше, это также хорошая G-пара. В частности, хорошей G-парой будет , что и требуется.

Случай C. Здесь доказательство аналогично ортогональному случаю. Мы только вкратце повторим основные моменты, указав отличие от рассмотренного выше. Матрица A остается той же самой. При этом у элементов группы ZG(A) первые и последние строки и столбцы нулевые, кроме элементов на диагонали, которые взаимно обратны и пробегают K*. Кроме того, "серединный" -квадрат лежит в G(n-2)=Spn-2(K). Далее, легко проверить, что класс сопряженности C(A) совпадает с En + (a-1)L, где . В частности, он уже замкнут. Проверка того, что отождествляется с факторным совершенно аналогична. Здесь , образ Lie(G) состоит из матриц того же вида, что и в ортогональном случае, только коэффициенты первой строки и первого столбца никак не связаны друг с другом и поэтому размерность образа тоже равна 2n-2. Наконец, (M(n), L) - очевидно хорошая пара. Достаточно рассмотреть башню и использовать то, что tr(x)-1 - G-инвариант! Заметим еще, что в симплектическом случае характеристика поля произвольна.

Пусть теперь G - любая группа типа B, D, C. Дословно повторяя доказательство теоремы 2 из [5], мы получим эпиморфизм , индуцированный (на остальных общих матрицах отображение тождественно). Разбив матрицы из M(n) на блоки в соответствии с блочным "строением" группы ZG(A), мы видим, что пространство M(n) изоморфно (так как ZG(A)-многообразие) в ортогональном случае и в симплектическом. Здесь K и K4 тривиальные модули, а на En-1 (соответственно на En-2) ZG(A) действует как G(n-1) (G(n-2)) c точностью до умножения на скаляр. Отсюда ясно, что каноническое отображение (), даст эпиморфизм (). Пусть Rn,m - Q-алгебра, порожденная следами от всевозможных произведений общих матриц, или транспонированных к ним (в случае C - симплектически транспонированных).

Лемма 2. Суперпозиция описанных выше отображений - это просто и затем - каноническое на остальных матрицах.

Доказательство. К сожалению, размеры статьи, допустимые в данном журнале, не позволяют нам привести полное доказательство. Поэтому мы просто отметим здесь, что In,m порождается элементами из После этого утверждение леммы очевидно, ведь произведение матрицы A на матрицы Xi(n), у которых приравнены нулю коэффициенты левого верхнего "угла" (или "окаймления" в случае C), дает тот же результат, что и произведение единичной матрицы.

В силу сделанного выше замечания о порождающих In,m специализация отображает In,m+1 в In,m. Отсюда уже легко получается основная теорема.

Теорема. Каноническое отображение алгебры K[M(n)m] в K[M(n-1)m] ( в случае C) индуцирует эпиморфизм колец инвариантов.

Список литературы

Akin K., Buchsbaum D.A., Weyman J. Shur functors and Shur complexes// Adv. in Math. Vol.44. P.207-278 (1982).

Борель А. Линейные алгебраические группы. M.: Мир., 1972.

De Concini C., Procesi C. A characteristic free approach to invariant theory// Adv. in Math. 1976. Vol.21. P. 330-354.

Donkin S. The normality of conjugacy classes of matrices// Inv. Math., Vol.101. P.717-736 (1990).

Donkin S. Invariants of several matrices// Invent. Math. Vol.110. P.389-401 (1993).

Grotendick A., Dieudonne J. Elements de geometrie algebriques// Inst. Hautes Etudes Sci.Publ.Math. 4. 1960-1967.

Grosshans F. Observable subgroups and Hilbert's fourteenth problem// Am.J. Math. 95. P.229-253 (1973).

Humphreys J.E. Linear algebraic groups/ Springer Verlag. 1975.

Zubkov A.N. Endomorphisms of tensor products of exterior powers and Procesi hypothesis// Commun. in Algebra. 22(15). 6385-6399 (1994).

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Делаю рефераты, курсовые, контрольные, дипломные на заказ. Звоните или пишите вотсап, телеграмм, вайбер 89675558705 Виктория.
16:41:23 16 октября 2021
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
23:08:37 10 сентября 2021
Если Вам нужна помощь с учебными работами, ну или будет нужна в будущем (курсовая, дипломная, отчет по практике, контрольная, РГР, решение задач, онлайн-помощь на экзамене или "любая другая" учебная работа...) - обращайтесь: https://clck.ru/P8YFs - (просто скопируйте этот адрес и вставьте в браузер) Сделаем все качественно и в самые короткие сроки + бесплатные доработки до самой сдачи/защиты! Предоставим все необходимые гарантии.
Нора02:35:39 24 июня 2020
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya03:12:55 25 августа 2019
.
.03:12:54 25 августа 2019

Смотреть все комментарии (16)
Работы, похожие на Статья: Подъем инвариантов классических групп

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286115)
Комментарии (4150)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте