Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Пирамида

Название: Пирамида
Раздел: Рефераты по математике
Тип: реферат Добавлен 07:33:06 24 марта 2007 Похожие работы
Просмотров: 446 Комментариев: 17 Оценило: 6 человек Средний балл: 4.3 Оценка: 4     Скачать

Пусть Q – плоский многоугольник в плоскости a и S – точка, не принадлежащая плоскости а. Соединим каждую точку М многоугольника Q с точкой S отрезком МS. Отрезки МS заполняют некоторый многогранник. Этот многогранник называется пирамидой (рис. 1)

Пирамида называется n-угольной, если Q – n-угольник.

Треугольная пирамида называется также тетраэдром. Многоугольник Q называется основанием пирамиды, а точка S – вершиной пирамиды. Высотой пирамиды называется отрезок перпендикуляра, проведенного через вершину к плоскости ее основания; концами этого отрезка являются вершина пирамиды и основание перпендикуляра; на рисунке 1 SH – высота пирамиды. (Высотой пирамиды называют длину этого отрезка.) Пусть A, B, C, …, K – вершины многоугольника Q, лежащего в основании пирамиды. Тогда треугольники ASB, BCS, …, KSA называются боковыми гранями пирамиды, а отрезки AS, BS, CS, …, KS боковыми ребрами.

Сечение пирамиды, проходящее через вершину и диагональ основания, называется диагональным сечением пирамиды. Например, треугольник ACS (см. рис.1) – диагональное сечение пирамиды.

Пирамида называется правильной, если основанием ее является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника (центром основания). Осью правильной пирамиды называется прямая, содержащая ее высоту.

Высота боковой грани правильной пирамиды, проведенная из вершины пирамиды, называется апофемой пирамиды (обозначение hбок). Все апофемы правильной пирамиды равны между собой.

На рисунке 2 изображена правильная треугольная пирамида, где SO – высота, а SD – апофема.

Часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию, называется усеченной пирамидой (рис. 3). Параллельные грани ABC и A1B1C1 называются основаниями, а отрезок перпендикуляра ОО1, опущенного из какой-нибудь точки О1 верхнего основания на нижнее основание, - высотой усеченной пирамиды. Усеченная пирамида называется правильной, если она составляет часть правильной пирамиды. Ее ось – прямая, проходящая через центры оснований. Боковые грани правильной усеченной пирамиды – равные равнобочные трапеции; их высоты называются апофемами.

Пример 1. Определить боковое ребро правильной четырехугольной пирамиды, если ее высота равна 7 см, а сторона основания равна 8 см.

Решение. Пусть условию задачи отвечает рисунок 4. Из прямоугольного треугольника ADC согласно теореме Пифагора имеем:

AC=√AD² + DC² = √8² + 8² = 8√2

и, значит, AO = 4√2. Наконец из прямоугольного треугольника AOS согласно той же теореме находим:

AS = √AO² + SO² =√32 + 49 =√81 = 9,

т.е. боковое ребро пирамиды равно 9 см.

Пример 2. Сторона основания правильной четырехугольной пирамиды равна 14 м, а площадь диагонального сечения – 14 м. Найдите боковое ребро пирамиды.

Решение. Пусть условию задачи отвечает рисунок 4.

Рассмотрим диагональное сечение ACS, где SO – высота пирамиды. Согласно известной формуле для площади треугольника:

½ AC ∙ SO = 14

В силу теоремы Пифагора AC = 14√2 и, значит, SO = √2.

Теперь из прямоугольного треугольника ASO по теореме Пифагора находим

AS = √SO² + (AC/2)² = √2 + 49 ∙ 2 = 10

Итак, боковое ребро пирамиды равно 10 м.

Пример 3. По данной стороне основания а и боковому ребру b определите высоту правильной треугольной пирамиды.

Решение. Так как пирамида правильная, то основание ее высоты O совпадает с центром правильного треугольника ABC – основания пирамиды (см. рис. 2). Поэтому отрезок BO равен радиусу окружности, описанной около треугольника ABC, и, значит, BO = а/√3. Теперь из прямоугольного треугольника BOS по теореме Пифагора получаем:

SO = √BS² – BO² = √b² – a²/3

Пример 4. В правильной четырехугольной усеченной пирамиде (рис.5) площади нижнего и верхнего оснований соответственно равны B и b, а боковое ребро составляет с плоскостью нижнего основания угол в 45º. Определить площадь диагонального сечения.

Решение. Стороны оснований равны √B и √b. Отсюда по теореме Пифагора основания диагонального сечения, которым является равнобочная трапеция, равны √2B и √2b. Далее, так как угол при основании этой трапеции равен 45º, то ее высота равна (√2B – √2b) : 2 и, значит, площадь искомого сечения

(√2B + √2b) ∙ √2B – √2b = 2B – 2b = B – b

2 2 4 2

Задача повышенной сложности

1. В основании пирамиды лежит равнобочная трапеция, диагональ которой l составляет с большим основанием угол а. Площадь боковой поверхности этой пирамиды S. Боковые грани пирамиды наклонены к плоскости основания ее под равными углами, определить эти углы.

Высота пирамиды [KO] падает в центр вписанной окружности.

│AB │+│CD│=│AD│+│BC│;

2│AB│=2│AM│; │AB│=│AM│;

2r = │CM│;

│CM│= l sina; │AM│=l cosa.

Боковая поверхность пирамиды представляет из себя площади треугольников с равными высотами. Периметр основания:

│AD│+│BC│+│AB│+│CD│=4│AM│;

S = r :2cos x ∙4 │AM│;

cos x = 2r ∙│AM│: S=│CM│∙│AM│: S= l²∙ sin² a : 2S

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Делаю рефераты, курсовые, контрольные, дипломные на заказ. Звоните или пишите вотсап, телеграмм, вайбер 89675558705 Виктория.
07:26:03 20 октября 2021
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
00:17:59 11 сентября 2021
Если Вам нужна помощь с учебными работами, ну или будет нужна в будущем (курсовая, дипломная, отчет по практике, контрольная, РГР, решение задач, онлайн-помощь на экзамене или "любая другая" учебная работа...) - обращайтесь: https://clck.ru/P8YFs - (просто скопируйте этот адрес и вставьте в браузер) Сделаем все качественно и в самые короткие сроки + бесплатные доработки до самой сдачи/защиты! Предоставим все необходимые гарантии.
Филимон16:28:09 24 июня 2020
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya04:31:55 25 августа 2019
.
.04:31:54 25 августа 2019

Смотреть все комментарии (17)
Работы, похожие на Реферат: Пирамида

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286108)
Комментарии (4150)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте