Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Иррациональные уравнения и неравенства

Название: Иррациональные уравнения и неравенства
Раздел: Рефераты по математике
Тип: статья Добавлен 22:58:06 06 апреля 2007 Похожие работы
Просмотров: 416 Комментариев: 17 Оценило: 5 человек Средний балл: 4.8 Оценка: неизвестно     Скачать

Колегаева Елена Михайловна, доцент кафедры математических методов и информационных технологий ДВАГС

I. Преобразование иррациональных выражений.

Иррациональным называется выражение, содержащее корни n-ой степени.

1) Одно из типичных преобразований иррациональных выражений – избавление от иррациональности в знаменателе.

а) Если в знаменателе стоит выражение вида , то необходимо числитель и знаменатель умножить на сопряженное к нему выражение . В этом случае применяется формула .

б) Если в знаменателе стоит выражение (или ), то числитель и знаменатель умножается, соответственно, на (или ). В этом случае применяются формулы

,

.

Пример 1. Избавиться от иррациональности в знаменателе:

а) ; б) ; в) ; г) ; д) ; е) .

Решение:

а) ;

б) ;

в) ;

г) ;

д) ;

е)

.

Отметим еще одно свойство:

которое часто применяется в преобразованиях.

Пример 2. Упростить выражение:

а) ; б) ; в) .

Решение:

а) , т.к. .

б) , т.к. .

в)

.


Выясним, при каких n выражения под знаком модуля меняют знак: n=-1, n=1, n=0.

1) Если n<-1, то

2) Если -1£n<0, то

3) Если 0<n<1, то

4) Если n³1, то

Ответ:

II. Иррациональные уравнения.

Рассмотрим уравнение вида .

Основной метод решения – возведение обеих частей уравнения в степень n. При этом, если n – четное, то могут возникнуть посторонние корни. Поэтому в уравнениях необходимо делать проверку.

Если уравнение содержит два и больше корней, то один из корней «уединяется», то есть уравнение приводится к виду .

Еще один способ решения – введение вспомогательной переменной.

Пример 3. Решить уравнения:

а) ;

б) ;

в) ;

г) .

Решение:

а) Û;

Проверка.

Þ х=-4 – посторонний корень,

– верно Þ х=2 – корень.

Ответ: х=2.

б)

Проверка.

– это выражение не существует, т.е.

– посторонний корень,

– верно Þ – корень.

Ответ: .

в)

Введем вспомогательную переменную Þ x2=t2–13

t2-13-2t=22; t2-2t-35=0,

t1=7; t2=-5.

Сделаем обратную замену:

Û х2+13=49 Û х2=36 Þ х=±6,

– не имеет решений.

Ответ: х=±6.

г)

Сделаем замену переменной. Положим . Тогда уравнение примет вид:

ÛÛ

ÞÛÛÛ.

Проверка показывает, что – корень.

Ответ: .

III. Решение иррациональных неравенств.

При решении этих неравенств следует помнить, что в четную степень можно возводить неравенства с неотрицательными членами.

Поэтому неравенство эквивалентно системам

или

Неравенство равносильно системе

Пример 4. Решить неравенства:

а) б)

в) г)

Решение.

а) ÛÛ

Решим третье неравенство системы методом интервалов:

x2-5x-14>0

x2-5x-14=0

(x-7)(x+2)>0


Найдем пересечение решений трех неравенств:

Ответ: -18£x<-2.

б)

если х-1£0, то неравенство верно, то есть х£1;

если x-1>0 и так как x2+1>0, возводим обе части в квадрат. Имеем:

ÛÛ x>1.

Объединяем два решения, получим х – любое.

Ответ: х – любое.

в)

ÛÛÛ

ÛÛ

Ответ: х³1.

г)

или


Û х³3

Ответ: .

Задачи для самостоятельного решения

Уважаемые ребята, ниже приводятся задания для самостоятельного решения, которые следует выполнить, оформить отдельно от заданий по другим предметам и выслать в адрес Хабаровской краевой заочной физико-математической школы.

Наш адрес: 680000, г. Хабаровск, ул. Дзержинского, 48, ХКЦТТ ( ХКЗФМШ).

М11.9.1. Упростить:

1) 2) 3)

4) , если , m>0, 0<n<1.

М11.9.2. Решить уравнения

;

;

;

.

М11.9.3. Решить неравенства:

;

;

;

.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Делаю рефераты, курсовые, контрольные, дипломные на заказ. Звоните или пишите вотсап, телеграмм, вайбер 89675558705 Виктория.
18:40:11 16 октября 2021
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
00:25:45 11 сентября 2021
Если Вам нужна помощь с учебными работами, ну или будет нужна в будущем (курсовая, дипломная, отчет по практике, контрольная, РГР, решение задач, онлайн-помощь на экзамене или "любая другая" учебная работа...) - обращайтесь: https://clck.ru/P8YFs - (просто скопируйте этот адрес и вставьте в браузер) Сделаем все качественно и в самые короткие сроки + бесплатные доработки до самой сдачи/защиты! Предоставим все необходимые гарантии.
Григорий16:59:03 24 июня 2020
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya04:38:47 25 августа 2019
.
.04:38:46 25 августа 2019

Смотреть все комментарии (17)
Работы, похожие на Статья: Иррациональные уравнения и неравенства

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286108)
Комментарии (4150)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте