Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Обработка и анализ информационных потоков: системы поддержки принятия решений

Название: Обработка и анализ информационных потоков: системы поддержки принятия решений
Раздел: Рефераты по информатике, программированию
Тип: реферат Добавлен 02:35:13 28 февраля 2008 Похожие работы
Просмотров: 2140 Комментариев: 14 Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно     Скачать

Естественное развитие систем управления базами данных и управленческих систем привело к появлению совершенно новых систем поддержки принятия решений. Как правило, основной задачей таких систем является возможность работы с неструктурированными и слабоструктурированными массивами данных.

Системы поддержки принятия решений, несмотря на значительное распространение в крупном бизнесе и органах государственной власти, относятся к решениям, про которые принято говорить как о «будущем в ИТ-системах для среднего и малого бизнеса». Тем не менее здесь будут рассмотрены основные подходы, используемые в различных решениях такого рода.

Итак, системы поддержки принятия решений (СППР) могут быть необходимы в случае, если у бизнеса есть потребность в обработке больших объемов разнородной (постоянно поступающей) информации с последующим анализом и стратегическим планированием дальнейших действий. В СППР используется несколько так называемых аналитических технологий — методик, позволяющих по известным данным оценить значения неизвестных характеристик и параметров. Современные разработки в этой области предоставляют возможности учета большого потока разнородной информации об объекте исследования, и в то же время широкие возможности инфраструктурного анализа позволяют руководителю своевременно принять правильное решение. В зависимости от данных, с которыми эти системы работают, СППР условно можно разделить на оперативные и стратегические. Первые предназначены для немедленного реагирования на изменения текущей ситуации в управлении финансово-хозяйственными процессами компании. Вторые ориентированы на анализ значительных объемов разнородной информации, собираемой из различных источников. Важнейшей целью этих СППР является поиск наиболее рациональных вариантов развития бизнеса компании с учетом влияния различных факторов: конъюнктуры целевых для компании рынков, изменения финансовых рынков и рынков капиталов, изменения в законодательстве и т.д. На сегодняшний день аналитические системы практически не используются в среднем и малом бизнесе. Возможности прогнозирования и моделирования ситуаций (так называемые «ситуационные центры»), а также функции автоматизированного сбора данных и их обработки существуют немногим более чем у 5% предприятий SMB. Тем не менее с дальнейшим ростом объемов информации на предприятиях и удешевлением конечных решений такого класса, можно прогнозировать бурный рост рынка СППР. В качестве первичного источника данных для аналитических систем должны выступать СУБД организации, офисные документы, сеть Интернет. При этом должны учитываться как внутренние для организации данные, так и глобальные сведения (макроэкономические показатели, конкурентная среда и т. д.).

Хранилище данных — оптимальная база для построения аналитической системы (АС). Работа с таким хранилищем значительно увеличивает ее эффективность, поскольку одним из ключевых показателей АС является возможность быстро получить результат.

Следующий шаг на пути к принятию решения— выборка данных. Независимо оттого, в какой базе данных находятся необходимые сведения, лицо, принимающее решение не должно вникать в детали работы с СУБД. Поэтому необходим механизм, трансформирующий термины предметной области в запросы к конкретной БД. Дальнейшие шаги — это собственно анализ и представление конечных результатов. Существует два методологических подхода в таких системах: выработка рекомендаций (концепция data mining) и подготовка данных (OLAP).

OLAP - средство составления отчетов на основе системы запросов

OLAP (Online Analytical Processing) — технология, основанная на инструментах математической статистики, она применяется главным образом для анализа и отображения информации в виде многомерных структур, называемых также «кубы OLAP». Позволяет решать следующие задачи:

1. Подготовить базы данных (часто объемные и содержащие сложные взаимосвязи);

2. Организовать гибкий и удобный доступ к базам данных через мощные средства формирования запросов;

3. Получить результаты запросов в форме, максимально удобной для последующего анализа;

4. Использовать мощные генераторы отчетов.

Такой подход может быть очень полезен в том случае, если лицо, принимающее решение, использует компьютер только для извлечения необходимых данных, представления этих данных в структурированном, понятном виде, а выводы делает самостоятельно.

Представленное преобразование данных в трехмерную структуру — один из мощнейших инструментов технологии OLAP. Он отличается гибкостью: каждый пользователь может определять нужные многомерные проекции данных без каких-либо ограничений. Кроме того, в рамках этого метода существует возможность производить детализацию данных до нужного уровня. Таким образом, технологию OLAP стоит рассматривать как средство формирования и поиска запросов к базе данных (хранилищу данных). При этом функциональности OLAP явно недостаточно, если требуется более детальный анализ либо есть необходимость в автоматизированном поиске скрытых взаимодействий между объектами в представленном массиве информации.

Data Mining - комплексный подход к интеллектуальному анализу данных

В отличие от методов аналитической обработки информации и создания отчетов, концепция Data Mining предполагает обнаружение нетривиальных взаимосвязей между объектами данных, которые нужны для принятия решений. В частности, инструментарий выработки рекомендаций обладает следующими возможностями:

1. Формирование множества альтернативных вариантов решений;

2. Использование нескольких критериев оценки;

3. Учет важности критериев;

4. Выбор лучшего варианта, который выдается как рекомендация.

Выделяют пять типов закономерностей, которые позволяет выявлять Data Mining: классификация, кластеризация, регрессия, ассоциация, последовательность и прогнозирование. Кратко их можно охарактеризовать так:

1. Классификация — это отнесение объектов (наблюдений, событий) к одному из заранее известных классов;

2. Кластеризация —это группировка объектов (наблюдений, событий) на основе данных (свойств), описывающих сущность объектов. Объекты внутри кластера должны быть похожими друг на друга и отличаться от объектов, вошедших в другие кластеры. Чем больше похожи объекты внутри кластера и чем больше отличий между кластерами, тем точнее кластеризация;

3. Регрессия, в том числе задачи прогнозирования. Установление функциональнои зависимости между зависимыми и независимыми перемененными;

4. Ассоциация — выявление закономерностей между связанными событиями. Примером такой закономерности служит правило, указывающее, что из события X следует событие Y. Такие правила называются ассоциативными. Впервые это задача была предложена для нахождения типичных шаблонов покупок, совершаемых в супермаркетах, поэтому иногда ее еще называют анализом рыночной корзины (market basket analysis);

5. Последовательные шаблоны—установление закономерностей между связанными во времени событиями. Например, после события X через определенное время произойдет событие Y;

6. Анализ отклонений — выявление наиболее нехарактерных шаблонов.

Это все, что нужно сделать для автоматизации процесса извлечения данных. Все остальное делает лицо, принимающее решение. Различные методы просто дают разную информацию в разных видах: в простейшем случае это таблицы и диаграммы, в более сложном — модели и правила. Полностью исключить участие человека невозможно, поскольку выбранные данные не имеют никакого значения, пока не будут применены в конкретной предметной области. Таким образом, методы решения задачи по принятию решения не зависят от инструментария. Поэтому в рамках двух вышеописанных парадигм может существовать сколь угодно широкий набор инструментов. Говорить о действительно полнофункциональном решении можно только в том случае, если был охвачен весь список задач. По мнению руководителей крупнейших компаний, разрабатывающих специализированные информационно-аналитические системы и системы поддержки принятия решений, это направление должно стать приоритетным при информатизации бизнеса. Основная задача, решаемая при переходе на использование таких систем, — помочь организациям наладить контроль и управление, способствующие повышению эффективности, рациональности и качества оказываемых услуг.

Список литературы

IT спец № 07 ИЮЛЬ 2007

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Делаю рефераты, курсовые, контрольные, дипломные на заказ. Звоните или пишите вотсап, телеграмм, вайбер 89675558705 Виктория.
02:34:59 15 октября 2021
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
01:10:53 11 сентября 2021
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya05:25:32 25 августа 2019
.
.05:25:31 25 августа 2019
.
.05:25:30 25 августа 2019

Смотреть все комментарии (14)
Работы, похожие на Реферат: Обработка и анализ информационных потоков: системы поддержки принятия решений

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286113)
Комментарии (4150)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте