Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Нахождение оптимальных параметров для полета тела через прямоугольную преграду

Название: Нахождение оптимальных параметров для полета тела через прямоугольную преграду
Раздел: Рефераты по математике
Тип: реферат Добавлен 01:04:07 24 марта 2008 Похожие работы
Просмотров: 22 Комментариев: 15 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Выполнил: ученик 11 Б класса Назаркин Павел Дмитриевич

Муниципальное общеобразовательное учреждение «Лицей №43»

Саранск, 2004

Постановка задачи.

Произвести необходимые расчеты для нахождения минимальной скорости тела, брошенного через прямоугольное препятствие.

Методы выполнения работы.

Для выполнения данной работы проделаем ряд математических вычислений и преобразований с использованием физических формул.

Зная, что траекторией движения тела, является парабола, а также математическую формулу записи данной линии, будем использовать уравнение параболы общего вида в качестве начальных данных поставленной задачи. В выбранной нами прямоугольной системе координат запишем данное уравнение для двух точек, принадлежащих линии движения – начальной точке А и точке В, в которой тело окажется через некоторый промежуток времени t. Решая систему полученных при этом уравнений, путем математических замен и преобразований выведем формулу зависимости движения тела от одной переменной L, т.е. коэффициенты k и b, участвующие в общем виде уравнения параболы, выразим через L. Затем, используя физический закон движения тела, брошенного под углом к горизонту, выразим переменную L через и V . В результате получим уравнение движения, в качестве коэффициентов в котором будут выступать переменные и V. Затем составим систему двух уравнений, полученных подстановкой координат точек А и В в последнее уравнение движения. Решая данную систему, мы найдем неизвестные нам величины и V, выразив их через имеющиеся известные нам параметры – ширину и высоту прямоугольного препятствия. Для нахождения Vmin воспользуемся производной функции.

Решение.

Уравнением линии движения тела, брошенного через прямоугольное препятствие, в общем виде является уравнение параболы :

y=-kx2+b

Введем прямоугольную систему координат и свяжем ее с прямоугольным препятствием, как показано на рисунке.

В данной системе координат уравнение движения тела в точках А и Б примет вид:

0=-k(a+L)2+b,

h=-ka2+b.

Выразим k и b через одну неизвестную L:

Вычитаем 1)-ое из 2)-ого:

h=k(a2+2aL+L2-a2),

h=k(2aL+L2) , (*);

h=b-ka2+b b=h+ka2 . (*)

Получилось, что уравнение движения зависит только от L:

y=-kx2+b, где коэффициенты k и b имеют вид (*).

Найдем зависимость L оти V.

Из курса физики известно: что движение тела, брошенного под углом горизонта описывается уравнениями

x=Vxt L=Vxt L=Vcost

y=Vyt+gt2/2 h=Vyt-gy t2/2 gt2-2Vyt+2h=0.

gt2-2Vyt+2h=0.

.

Мы рассматриваем время движения от точки А до Б, значит

, где Vy=Vsin.

Итак,

Умножив обе части уравнения на g, получим:

(1)

Известно, что т.е.

(2)

С другой стороны tg=y’ в точке А, т.е. tg=y’(-a-L);

Подставив значение tg в (2), получим:

V2sin2=g(a+L) tg

V2sincos=g(a+L) Lg=V2sincos-ga (3)

Сравнив (1) и (3) получаем, что:

.

Получили уравнение с двумя неизвестными V и: выразив V через , мы получим ту самую функцию, которую мы должны были найти:

Пусть z=V2, тогда z cos2(z sin2-2gh)=g2a2;

z2 cos2 sin2- z cos22gh-g2a2=0;

Получили квадратное уравнение относительно z

Очевидно, значит, т.к. z=V2>0, то .

Вместо зависимости V от рассмотрим зависимость z от , и обозначив получим зависимость z от t.

Получим , где z=V2, .

Выразим через t, если ;

Значит,

Т.е.

Таким образом, чтобы найти Vmin и , нам нужно во-первых, найти fmin и t.

.

Умножив обе части уравнения на , получим

Прежде чем возвести обе части в квадрат, сделаем предварительный анализ получившегося уравнения: т.к.

то и

т.е. и

Умножив обе части уравнения на (t-1)2, получим

Т.к t<2 и t>1 (т.к. ), то можно извлечь корень.

; (4)

Итак, f(t)=2h+2a, значит .

Т.к. z=V2, то т.е. (5)

Осталось найти L:

Его найдем используя (3).

Результаты работы.

Проделанным расчетом мы нашли зависимость скорости, движения брошенного через прямоугольное препятствие тела, так чтобы она была минимальной, от длины и высоты прямоугольного препятствия. То есть, зная данные препятствия, - его длину и ширину – а так же формулы, полученные в данной работе, мы можем определить на каком расстоянии от препятствия, под каким углом и с какой минимальной скоростью необходимо бросить тело, чтобы оно перелетело через это препятствие.

Актуальность темы.

Данные расчеты и выведенные формулы используются в различных сферах деятельности человека. В частности, в военной практике, для правильного расчета движения траектории снарядов.

Приложение.

К работе прилагается программа, результатом которой является вывод на экран траектории движения тела, брошенного через прямоугольное препятствие. Входными параметрами программы являются данные прямоугольного препятствия – его длина и высота. Программа написана на языке программирования Delphi.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
01:29:37 11 сентября 2021
Если Вам нужна помощь с учебными работами, ну или будет нужна в будущем (курсовая, дипломная, отчет по практике, контрольная, РГР, решение задач, онлайн-помощь на экзамене или "любая другая" учебная работа...) - обращайтесь: https://clck.ru/P8YFs - (просто скопируйте этот адрес и вставьте в браузер) Сделаем все качественно и в самые короткие сроки + бесплатные доработки до самой сдачи/защиты! Предоставим все необходимые гарантии.
Хлоя17:52:57 25 июня 2020
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya05:45:41 25 августа 2019
.
.05:45:40 25 августа 2019
.
.05:45:39 25 августа 2019

Смотреть все комментарии (15)
Работы, похожие на Реферат: Нахождение оптимальных параметров для полета тела через прямоугольную преграду

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286089)
Комментарии (4150)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте