Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: К теории полета лыжника при прыжках с трамплина

Название: К теории полета лыжника при прыжках с трамплина
Раздел: Рефераты по физкультуре и спорту
Тип: реферат Добавлен 10:16:01 27 марта 2008 Похожие работы
Просмотров: 56 Комментариев: 23 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Кандидат педагогических наук, доцент Н.А. Багин, Ю.И. Волошин, доктор физико-математических наук, доцент В.П. Евтеев, Великолукский государственный институт физической культуры

После разгона и правильно выполненного отталкивания от стола отрыва результат прыжка с трамплина определится полетом лыжника в воздухе под действием тяжести и аэродинамических сил.

Рассмотрение полета в спортивной литературе [2, 4] часто носит нестрогий, качественный характер, основанный главным образом на результатах эксперимента и анализа мировых рекордов. В настоящей работе получены простые формулы, позволяющие тренеру количественно проанализировать зависимость длины прыжка от начальной скорости полета, угла вылета со стола отрыва, геометрии трамплина, аэродинамических качеств полета и скорости ветра.

Выберем начало координат на краю стола отрыва и направим горизонтальную ось Х вдоль трамплина, а ось Y вертикально вверх.

Выпишем уравнения движения центра тяжести лыжника в координатной форме:

Vx= -(KxVx/V+KyVy/V) (V+U0Vx/V)2, (1)

Vy= -g-(KxVy/V+KyVx/V) (V+U0Vx/V)2, (2)

где Vx, Vy - проекции скорости полета на координатные оси, V - абсолютная величина скорости, U0 - алгебраическая скорость горизонтального ветра, положительная при встречном ветре и отрицательная при попутном.

Kx=? rCxS/m, Ky=? rCyS/m - аэродинамические числа, имеющие размерность, обратную длине, r - плотность воздуха; Сx - коэффициент лобового сопротивления; Cy - коэффициент подъемной силы; S - фронтальная площадь лыжника с лыжами; m - масса лыжника с лыжами. Точкой обозначены производные по времени.

Уравнения (1) и (2) нелинейные. Упростить их анализ и получить приближенные решения удобно переходом к функциям комплексного переменного. Ранее этот прием успешно применялся одним из авторов к системам нелинейных уравнений небесной механики [3]. Он позволяет свести систему двух уравнений к одному. С этой целью введем в рассмотрение комплексную скорость полета (КСП): W=Vx+iVy, (3)

где i - мнимая единица и комплексное аэродинамическое число K=Kx+iKy. (4)

Умножая уравнение (2) на мнимую единицу и складывая с первым уравнением, получим с учетом (3) и (4) следующие уравнения для КСП:

W=-ig-K(V+U0(W+W)/2V)2W/V, (5)

где чертой сверху обозначены комплексно-сопряженные величины.

Полет лыжника состоит из взлета на вершину траектории и спуска с нее. Рассмотрим их поэтапно. Запишем уравнение (5) в виде:

W=-ig-K(V+U0cosj)2W/V. (6)

За время взлета, измеряемого несколькими десятыми долей секунды, скорость полета изменяется мало, а полярный угол изменяется от угла вылета j0 в несколько градусов до нуля на вершине траектории. Поэтому мы не совершим большой ошибки, если заменим в (6) скорость V начальной скоростью V0 и затем усредним полученный коэффициент перед W по интервалу изменения полярного угла. Тогда уравнение (6) превращается в дифференциальное линейное уравнение первого порядка с постоянными коэффициентами:

W=-ig-KC0W, (7)

где C0=V0+2U0sinj 0/j0+U02(1+sin2j0/2j0/2V0.

Решение уравнения (7) имеет вид:

W=W0exp(-KC0t)-ig(1-exp(KC0t))/KC0. (8)

На протяжении всего взлета KxC0t<<1, поэтому, разлага показательные функции в ряд и ограничиваясь первыми двумя членами разложения, получим из (8) следующее упрощенное выражение для КСП:

W=W0(1-KC0t)-igt. (9)

Выделим в (9) действительную и мнимую части. В результате будем иметь:

Vx = V0cosj0 - axt, (10)

Vy = V0sinj0 - (g-ay)t, (11)

ax = (Kx cosj0 + Ky sinj0)C0V0, (12)

ay = (Kycosj0 - Kxsinj0)C0V0, (13)

В приближении (10), (11) движения центра тяжести лыжника вдоль координатных осей равнозамедленные. Аэродинамические ускорения даются формулами (12), (13).

Время взлета ta на вершину определится из условия Vy=0

ta = V0 sinj0 / (g-ay). (14)

Интегрируя функции (10) и (11), найдем координаты вершины траектории:

xa = V0 cosj0 ta - ?axta2, (15)

ya = V0 sinj0 ta - ?(g-ay)ta2. (16)

Рассмотрим теперь спуск лыжника с вершины траектории. Начальная скорость спуска равна:

Va = V0 cosj0 - axta. (17)

Затем скорость нарастает от скорости (17) вплоть до скорости Vg свободного планирования при полете с больших трамплинов. Определим эту скорость. При свободном полете аэродинамические силы и сила тяжести взаимно уравновешиваются и КСП перестает зависеть от времени.

Уравнение (5) принимает вид:

- ig - KP02Wg / Vg = 0, (18)

где P0 = Vg + U0(Wg +Wg) / 2Vg. (19)

Сложим равенство (18) с комплексно-сопряженным равенством

ig - KP02 Wg / Wg = 0.

В результате получим:

KWg + KWg = 0.

Умножив на KWg, находим |K|2 Wg2 + K2Vg2 = 0,

Wg = -ikVg / |K|. (20)

Подстановка (20) в (18) дает Р02 = g/ |K|.

Выбор противоположного знака в формуле (20) приведет к отрицательному значению Р02, что невозможно. Следовательно,

P0 = (g/|K|)?. (21)

Подставив (20) и (21) в (19), получим для скорости планирования следующее выражение:

Vg = (g/|K|)? - (Kg/|K|)U0. (22)

При встречном ветре скорость свободного полета (22) уменьшается, а при попутном - увеличивается. Если ветра нет, то согласно (21)

Vg = P0.

Линеаризуем уравнение (5), подставив в выражение для коэффициента перед W скорости свободного полета (23) и (22). Тогда оно примет вид:

W = -ig - KbW, (23)

где

b = P02/Vg = g/|K|Vg. (24)

Решение уравнения (23):

W = Vaexp(-KbT) - ig(1-exp(-KbT))/Kb, (25)

где

T = t - ta, (26)

обладает тем важным свойством, что при T, стримящемся к бесконечности, оно асимптотически стремится к скорости свободного полета (20). Действительно, при T, стримящемся к бесконечности, показательные функции стремятся к нулю и согласно (24):

W = -ig/Kb = -iKg|K| Vg/|K|2g = Wg.

При T = 0 из формулы (25) следует начальная скорость спуска Va. Поэтому мы полагаем, что функция (25) достаточно хорошо аппроксимирует КСП на всем протяжении полета. Интегрируя (25), получим в параметрической форме следующую аппроксимацию комплексной траектории спуска (КТС): Z = Za + Va(1 - exp(-KbT))/Kb - ig(T- (1 - exp(-KbT))/Kb)/Kb. (27)

При прыжках с больших трамплинов KxbT ~1. Поэтому разложим показательные функции в ряд и ограничимся не двумя, как выше, а четырьмя членами разложения. Тогда более простая аппроксимация КТС имеет вид

Z = Za + Va(t - ?KbT2 + 1/8(Kb)2T3) - ig(? T2 - 1/8KbT3). (28)

Выделив в (28) действительную и мнимую части, получим аппроксимацию траектории спуска в параметрической форме:

X = Xa + VaT - ЅKxbVaT2 + 1/8(Kybg + (Kx2 - Ky2)b2Va)T3, (29)

Y = Ya - 1/8(g - KybVa)T2 + 1/8(Kxbg - 2KxKyb2Va)T3. (30)

При приземлении лыжника траектория полета пересекается с плоскостью

Y + H + (X - N) tg? = 0 (31)

дорожки приземления [5], где Н - глубина опускания траектории расчетного прыжка; N - проекция траектории расчетного прыжка на продольную ось горы приземления, ? - угол наклона дорожки приземления. Подставив (29) и (30) в (31), из кубического уравнения

Tc3 - BTc2 + CTc - D = 0, (32)

где B = 3(g + (Kxtg? - Ky)bVa)/A, (33)

A = (Kx + Kytg?)bg - (2KxKy - (Kx2 - Ky2)tg?)b2Va, (34)

C = bVatg? /A, (35)

D = 6n/A, (36)

n = (N - Xa)tg? - H - Ya, (37)

оценим время спуска tc.

Подстановкой Tc = Q + B/3 (38)

уравнение (32) приводится к виду Q3+ PQ-q= 0, (39)

где P = B2/3 + C, (40)

q = 2B3/27 - BC/3 + D. (41)

Решение кубического уравнения (39) находится по формуле:

Q = ((q2/4 + P3/27)? + q/2)1/8 - ((q2/4 + P3/27)? - q/2)1/8. (42)

Подставив затем время спуска, вычисленное по формулам (33-42), в выражения (29) и (30), определим координаты места приземления лыжника XL, YL и длину прыжка

L = (XL2 + YL2)?. (43)

Например, при общепринятой позе (руки назад) в полете лыжника массой m=70 кг, когда Cx = 0,72, Cy = 0,61, r = 1,23 кг/м3, S = 0,62 м2, Kx = 3,92Ч10-3 м-1, Ky = 3,32Ч10-3 м-1,

j0 = 60, V0 = 30 м/с.

Согласно (12-17) ta = 0,441C, Va = 28,16 м/с, Xa = 12,8 м, Ya = 0,7 м.

При отсутствии ветpа b=43,7 м. Для трамплина с параметрами Н=56 м, N=102 м, H/N=0,55, L=116 м.

По формулам (29-43) получим Tc = 5,43c, XL = 137,6 м, YL = -76,1 м, L = 157 м.

Результат оказался несколько завышенным. Его можно уточнить, если исходить из более точной аппроксимации траектории спуска, которая следует из КТС (27) при выделении действительной и мнимой частей:

X = Xa + (KygT + f1Se(T) - f2Ce(T)/|K}2b, (44)

Y = Ya - (KxgT - f1Ce(T) - f2Se(T)/|K|2b, (45)

где f1= (Kx2 - Ky2)g/|K|2b + KyVa,f2 = 2KxKyg/|K|2b - KxVa, (46)

Se(T) = exp(-KxbT)sinKybT, Ce(T) = 1 - exp(-KxbT)cosKybT. (47)

После подстановки приведенных выше исходных данных в формулы (44-47) и времени спуска Tc = 5,43C, найденного из кубического уравнения (32), находим XL = 127,4 м, YL = -71,7 м, L = 146 м. Кубическая аппроксимация (29), (30) спуска, давая завышенную длину прыжка, почти не изменяет расчетного параметра прыжка H/N HL/NL=0,553. Поэтому именно ее следует положить в основу расчета времени спуска. При этом можно обойтись без решения (42) уравнения (39), поскольку |Q|3 <<1. Поэтому |Q|~ q/p. (48)

В приведенном выше примере P = 182,7 C2, q = -36,3C3,

B = 17,04C.

Согласно (42) Q = -0,23C, а по формуле (47) Q = -0,20C. Из равенства (38) Tc =5,46C. Ошибка равна 0,55%. Кубическую аппроксимацию можно значительно улучшить с помощью простейших аппроксимантов Паде [1], записать X = Xa - ?KxbVaT2/(1 + fx T) + Va T, (49)

Y = Ya - ?(g - KybVa) T2/(1 + fy T), (50)

fx = 1/3(Kyg + (Kx2 + (Kx2 - Ky2bVa)/KxVa, (51)

fy = 1/3(Kxbg - 2KxKyb2Va)/(g - KybVa). (52)

Первые два члена разложения в степенные ряды функций (49) и (50) даают кубическую аппроксимацию, остальные определенным образом учитывают неучтенные ранее члены разложения более высоких степеней t. Для нашего примера расчет по формулам (49-52), (43) дает:

XL = 122,6 м, YL = -76,7 м, L = 144,6 м.

Последний результат практически совпадает с длиной прыжка, рассчитанной по более точным формулам (44-47).

Из приведенной выше теории, справедливой при любом ветре, следует вывод, что длины прыжков с трамплинов увеличиваются с ростом начальной скорости, аэродинамического качества полета, углов вылета и наклона дорожки приземления и снижения лобового сопротивления. Легко количественно проанализировать влияние этих факторов на длину прыжка с помощью обычного микрокалькулятора.

Список литературы

1. Апресян Л.А. Аппроксиманты Паде. Изв. вузов. Радиофизика, 1979, т. 22, № 6, с. 653-674.

2. Грозин Е.А. Прыжки на лыжах с трамплина. - М.: ФиС, 1971.

3. Евтеев В.П. Периодические решения плоской эллиптической задачи трех тел. - Космические исследования, 1988, т. 26, вып. 5, с. 785-787.

4. Прыжки на лыжах с трамплина. Под ред. Г.Р. Ниренберга. - М.: ФиС, 1964, с. 140-152.

5. Спортивные сооружения /Под ред. Ю.А. Гагина. - М.: ФиС, 1976, с. 162-167.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита06:51:55 02 ноября 2021
.
.06:51:54 02 ноября 2021
.
.06:51:54 02 ноября 2021
.
.06:51:53 02 ноября 2021
.
.06:51:53 02 ноября 2021

Смотреть все комментарии (23)
Работы, похожие на Реферат: К теории полета лыжника при прыжках с трамплина

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294167)
Комментарии (4230)
Copyright © 2005-2022 HEKIMA.RU [email protected] реклама на сайте